Fizik Bilim Dalı
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/1819
Browse
Browsing Fizik Bilim Dalı by Access Right "info:eu-repo/semantics/openAccess"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 2Citation - Scopus: 3Analysis of the Integrated Intensity of the Central Peaks Calculated as a Function of Temperature in the Ferroelectric Phase of Lithium Tantalate(Vinca inst Nuclear Sci, 2018) Yurtseven, Hamit; Kiraci, Ali; 42475; 09.01. Ortak Dersler Bölümü; 09. Rektörlük; 01. Çankaya ÜniversitesiThe integrated intensity of the central peak is calculated as a function of temperature in the ferroelectric phase (T < T-C) of nearly stoichiometric LiTaO3. This calculation is performed using the temperature dependence of the order parameter obtained from the mean field theory at temperatures lower than the transition temperature T-C (T-C = 963 K) of this crystal. The calculated values of the order parameter (squared) are fitted to the integrated intensity of the central peaks as observed from the Raman and Brillouin scattering experiments as reported in the literature in the ferroelectric phase of nearly stoichiometric LiTaO3. Our results are in good agreement with the observed behavior of LiTaO3 crystal. Because of the applications of LiTaO3 in several academic disciplines including the material science and thermal science, it is beneficial to investigate dynamic properties of this crystal such as the damping constant, inverse relaxation time and the activation energy as also we studied here.Article Analysis of the Specific Heat and the Free Energy of [N(Ch 3 ) 4 ] 2 Znbr 4 Close to the Ferro-Paraelastic Phase Transition(Taylor&Francis LTD, 2019) Kiracı, Ali; 42475; 09.01. Ortak Dersler Bölümü; 09. Rektörlük; 01. Çankaya ÜniversitesiA power-law formula deduced from the Ising model was used to analyze the temperature dependence of the specific heat C p and the Gibbs free energy G of [N(CH 3 ) 4 ] 2 ZnBr 4 compound in the vicinity of the phase transition temperature of T C = 287.2 K. Obtained values of the critical exponents α from the Gibbs free energy were consistent with that predicted from 2-d potts model (α = 0.3), while obtained values of α from the specific heat in both ferroelastic and paraelastic phases were consistent with that predicted from the mean field theory (α = 0) in the vicinity of the phase transition temperature. This is an indication of that [N(CH 3 ) 4 ] 2 ZnBr 4 compound undergoes a second order type phase transition. Also, the enthalpy (H) and the entropy (S) of this crystal were calculated in terms of the extracted values of the critical exponent in both ferroelastic and paraelastic phases.
