Fizik Bilim Dalı Yayın Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/4363
Browse
Browsing Fizik Bilim Dalı Yayın Koleksiyonu by Author "Gasanly, N.M."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Growth and characterization of NaBi(Mo0.5W0.5O4)2 single crystal: A promising material for optoelectronic applications(2023) Işık, M.; Güler, İ.; Gasanly, N.M.; 101531The structural and optical characteristics of NaBi(Mo0.5W0.5O4)2 single crystals grown by Czochralski method were investigated. X-ray diffraction (XRD) pattern exhibited four well-defined peaks related to tetragonal crystalline structure with a space group I41/a. Raman and infrared transmittance spectra were recorded to investigate vibrational properties of the compound. Room temperature transmission spectrum was measured to reveal band gap energy of the crystal. The derivative spectral and absorption coefficient analyses resulted in direct band gap energy of 3.19 and 3.18 eV, respectively. Urbach energy of the crystal was also determined as 0.17 eV from photon energy dependency of absorption coefficient. The structural and optical parameters obtained for NaBi(Mo0.5W0.5O4)2 were compared with the parameters of the NaBi(XO4)2 (X: Mo,W) compounds to understand the effect of the composition on the studied properties. The reported characteristics of NaBi(Mo0.5W0.5O4)2 point out that the compound has significant potential to be used in optoelectronic devices.Article Growth and temperature tuned band gap characteristics of NaBi(MoO4)2 single crystal(2023) Isik, M.; Güler, İ.; Gasanly, N.M.; 101531Structural and optical properties of double sodium-bismuth molybdate NaBi(MoO4)2 semiconductor compound was investigated by x-ray diffraction, Raman and transmission experiments. From the x-ray diffraction experiments, the crystal that has tetragonal structure was obtained. Vibrational modes of the crystal were found from the Raman experiments. Transmission experiments were performed in the temperature range of 10-300 K. Derivative spectroscopy analysis and absorption spectrum analysis were performed to get information about the change in band gap energy of the crystal with temperature. It was observed that the band gap energies of the crystal at different temperatures obtained from these techniques are well consisted with each other. By the help of absorption spectrum which was obtained from transmission measurements performed at varying temperatures, absolute zero value of the band gap and average phonon energy as 3.03 ± 0.02 eV and E p h = 24 ± 0.2 meV, respectively. Moreover, based on absorption spectrum analysis the Urbach energy of the crystal was obtained as 0.10 eV.Article Temperature-dependent absorption edge and photoconductivity of Tl 2In2S3Se layered single crystals(2013) Güler, İpek; Ambrico, M.; Ligonzo, T.; Gasanly, N.M.; 101531Temperature variation of indirect band gap of Tl2In 2S3Se layered single crystals were obtained by means of absorption and photoconductivity measurements. The temperature coefficient of -7.1 × 10-4 eV/K from absorption measurements in the temperature range of 10-300 K in the wavelength range of 520-1100 nm and -5.0 × 10-4 eV/K from PC measurements in the temperature range of 132-291 K in the wavelength range of 443-620 nm upon supplying voltage V = 80 V were obtained. From the analysis of dark conductivity measurements in the temperature range of 150-300 K, conductivity activation energy was obtained as 0.51 eV above 242 K. The degree of the disorder, the density of localized states near Fermi level, the average hopping distance and average hopping energy of Tl2In2S3Se crystals were found as, 1.9 × 105 K, Nf = 4 × 1020 cm -3eV-1, 29.1 Å and 24.2 meV in the temperature range of 171-237 K, respectively. Activation energy of hopping conductivity at T = 171 K was obtained as 41.3 meV and the concentration of trapping states was found as 1.6 × 1019 cm-3.