Fizik Bilim Dalı Yayın Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/4363
Browse
Browsing Fizik Bilim Dalı Yayın Koleksiyonu by Author "Işık, M."
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Article Characterization of linear and nonlinear optical properties of NaBi(WO4)2 crystal by spectroscopic ellipsometry(2024) Güler, İpek; Güler, İpek; Gasanly, N. M.; 101531NaBi(WO4)2 compound has been a material of considerable attention in optoelectronic applications. The present research, in which we examined the linear and nonlinear optical properties of NaBi(WO4)2 crystal using the spectroscopic ellipsometry method, elucidates the optical behavior of the crystal in detail. Our work provides a sensitive approach to determine the spectral characteristic of the crystal. The spectral dependence of various optical parameters such as refractive index, extinction coefficient, dielectric function and absorption coefficient was reported in the range of 1.2-5.0 eV. Optical values such as bandgap energy, critical point energy, single oscillator parameters were obtained as a result of the analyses. In addition to linear optical properties, we also investigated the nonlinear optical behavior of NaBi(WO4)2 and shed new light on the potential applications of the crystal. Absorbance and photoluminescence spectra of the crystal were also reported to characterize optical, electronic and emission behavior of the compound. Our findings may form the basis for a number of technological applications such as optoelectronic devices, frequency conversion, and optical sensors. This research contributes to a better understanding of the optical properties of NaBi(WO4)2 crystal, highlighting the material's role in future optical and electronic technologies.Article Exploring the linear and nonlinear optical behavior of (TlInS2)0.75(TlInSe2)0.25: Insights from ellipsometry measurements(2023) Güler, İpek; Güler, İpek; Gasanly, N.; 101531The search for layered structured new semiconductor materials with remarkable optical properties has become a driving force, especially for materials science. Tl2In2S3Se [(TlInS2)0.75(TlInSe2)0.25], a fascinating compound, holds great promise for advanced photonic and optoelectronic applications. In the present study, the linear and nonlinear optical properties of Tl2In2S3Se layered single crystals were studied by ellipsometry measurements. The variation of refractive index, extinction coefficient, absorption coefficient and skin depth with energy were investigated. Applying the derivative analysis technique to the absorption spectrum, indirect bandgap was found as 2.19 eV. The refractive index data was analyzed considering single-effective-oscillator model. The lattice dielectric constant, plasma frequency, carrier density to the effective mass ratio and zero-frequency refractive index were found. Moreover, the change in optical conductivity with energy yielded to determine the direct bandgap as 2.40 eV. The optical parameters of nonlinear refractive index, first-and third-order nonlinear susceptibilities were also reported.Article Growth and characterization of NaBi(Mo0.5W0.5O4)2 single crystal: A promising material for optoelectronic applications(2023) Işık, M.; Güler, İ.; Gasanly, N.M.; 101531The structural and optical characteristics of NaBi(Mo0.5W0.5O4)2 single crystals grown by Czochralski method were investigated. X-ray diffraction (XRD) pattern exhibited four well-defined peaks related to tetragonal crystalline structure with a space group I41/a. Raman and infrared transmittance spectra were recorded to investigate vibrational properties of the compound. Room temperature transmission spectrum was measured to reveal band gap energy of the crystal. The derivative spectral and absorption coefficient analyses resulted in direct band gap energy of 3.19 and 3.18 eV, respectively. Urbach energy of the crystal was also determined as 0.17 eV from photon energy dependency of absorption coefficient. The structural and optical parameters obtained for NaBi(Mo0.5W0.5O4)2 were compared with the parameters of the NaBi(XO4)2 (X: Mo,W) compounds to understand the effect of the composition on the studied properties. The reported characteristics of NaBi(Mo0.5W0.5O4)2 point out that the compound has significant potential to be used in optoelectronic devices.Article Spectroscopic ellipsometry studies of optical properties of TlIn(S0.25Se0.75)2 crystal(2023) Güler, I.; Işık, M.; Gasanly, N.; 101531The optical properties of TlIn(S0.25Se0.75)2 crystals were studied by ellipsometry measurements. X-ray diffraction pattern presented well-defined peaks associated with monoclinic structure. Energy dependent graphs of various linear optical parameters of the crystal were presented in the 1.25–4.50 eV range. The band gap and Urbach energies of the compound were found as 1.96 and 0.68 eV, respectively, from the analyses of the absorption coefficient. Refractive index spectrum was analyzed considering the single-effective-oscillator model to get oscillator and dispersion energies, zero and high frequency dielectric constants, plasma frequency. Moreover, the nonlinear refractive index, first-order and third-order nonlinear susceptibilities of TlIn(S0.25Se0.75)2 crystal were revealed in the present paper.Article Structural and optical properties of (TlInS2)0.75(TlInSe2)0.25 thin films deposited by thermal evaporation(2023) Güler, I.; Işık, M.; Gasanly, N.; 101531Layered semiconductor materials have become a serious research topic in recent years, thanks to their effective optical properties. In this article, the thin-film structure of Tl2In2S3Se [(TlInS2)0.75(TlInSe2)0.25] material with layered structure was grown by thermal evaporation method. The structural, morphological, and optical properties of the deposited thin films were examined. X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS) and atomic force microscopy (AFM) techniques were used to get information about structural and morphological properties of the thin films. XRD pattern presented well-defined peaks associated with monoclinic crystalline structure. The crystallite size, dislocation density, and lattice strain of the films were also obtained from the analyses of XRD pattern. EDS analysis showed that atomic compositional ratios of the Tl, In, S, and Se elements are consistent with chemical formula of Tl2In2S3Se. The optical characterization of thin film was performed using transmission and Raman spectroscopy techniques. Raman spectrum offered information about the vibrational modes of the thin film. The analyses of the transmission spectrum presented the indirect and direct band gap energies of the Tl2In2S3Se thin film as 2.23 and 2.52 eV, respectively. The further analyses on the absorption coefficient resulted in Urbach energy of 0.58 eV.Article Thermoluminescence characterization of (Ga2Se3)(0.25) - (Ga2S3)(0.75) single crystal compounds(2020) Güler, İpek; Güler, İpek; Gasanly, N. M.; 101531Ga2Se3 and Ga2S3 compounds take attention due to their potential applications in photovoltaics. Defects and impurities may affect the quality of optoelectronic devices. Therefore, it is worthwhile to determine the parameters (activation energy, order of kinetics, frequency factor) of traps associated with the defects and/or impurities. The aim of the present paper is to investigate the trapping parameters of (Ga2Se3)(0.25) - (Ga2S3)(0.75) single crystal which is one of the member of (Ga2Se3)(x) - (Ga2S3)(1-x) mixed crystals. For this purpose, thermoluminescence (TL) experiments were performed on (Ga2Se3)(0.25) - (Ga2S3)(0.75) single crystals in the 10-300 K region. TL spectra were also recorded using various heating rates in between 0.2 and 1.0 K/s and stopping temperatures from 30 to 60 K to get the detailed information about the characteristics of the trapping parameters. TL glow curves exhibited the overlapped peaks. The stopping temperature experimental data indicated that traps present quasi-continuous distribution within the band gap. Initial rise method analyses were applied to get the activation energies of quasi-continuously distributed revealed traps. Thermal activation energies of distributed traps were found as increasing from 108 to 246 meV as stopping temperature was increased from 30 to 60 K. The structural characteristics (lattice constants and atomic compositions of constituent elements) of used compound were also reported in the present study.