Browsing by Author "Abdal, Sohaib"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Article Bioconvection attribution for effective thermal transportation of upper convicted Maxwell nanofluid flow due to an extending cylindrical surface(2022) Jarad, Fahd; Siddique, Imran; Abdal, Sohaib; Jarad, Fahd; Ali, Rifaqat; Salamat, Nadeem; Hussain, Sajjad; 234808The growth of compact density heat gadgets demands effective thermal transportation. The option of nanofluid plays a dynamic role in this requirement. This research shows the impact of gyrotactic microorganisms on non-Newtonian fluid (Maxwell fluid) passing on the expanding cylindrical surface. The main objective of the present observation is to determine the heat and mass transportation of Maxwell nanofluid. The convective boundary condition and zero mass flux conditions are incorporated. In mathematical derivation, the approximation of the boundary layer is applied. The primal motivation pertains to exaggerating the thermal transport of heat exchangers in industrial processes. To attain the effects of Brownian motion as well as thermophoresis the Buongiorno nanofluid is utilized. By assimilating suitable transformation, the concluding simultaneous for a non-linear set of equations is tackled numerically by hiring Runge-Kutta procedure. The coding is developed and run in the Matlab environment. The leading partial differential system is converted into an ordinary differential system. The role of emerging parameters is elaborated. Also tangible quantities i.e. Skin friction factor, Nusselt number, Sherwood number, and motile density coefficient are enumerated. An accession in the magnetic field causes depreciation in the velocity profile. Where increment in Schmidt number Sc causes a decrement in Sherwood number. The suitable ranges of parameters where increasing or decreasing behavior becomes smooth are taken as 0.0 ≤ M ≤ 6.0, 0.0 ≤ γ≤ 0.8, 0.7 ≤ Pr ≤ 1.0, 0.1 ≤ Nt ≤ 0.7, 0.01 ≤ Nb ≤ 0.1, 3.0 ≤ Sc ≤ 6.0, 2.0 ≤ Lb ≤ 7.0, 0.1 ≤ Pe ≤ 0.7 and 1.0 ≤ δ≤ 7.0. The applications of the current study can be seen in chemical and metallurgical industries, the process of thermo-fluid, power generation, executed via condensers, cooling, and heating in large buildings, transportation, etc.Article Case Studies in Thermal Engineering(2022) Jarad, Fahd; Siddique, Imran; Ali, Rifaqat; Jarad, Fahd; Abdal, Sohaib; Hussain, Sajjad; 234808We scrutinized the influence of nonlinear heat radiation on heat transmission evaluation of Carreau nanofluid and tangent hyperbolic nanofluid streams across a wedge with gyrotactic microorganisms by taking slip situations into consideration in this research article. The necessary nonlinear partial differential formulation is transmuted into non-linear ordinary differential equations by employing appropriate similarity variables, and these equations, including the boundary constraints are resolved in Matlab software utilizing Runge-Kutta fourth order via shooting tactic. A definite description of the framework is achieved by fluctuating the inputs of influential variables of the dependent functions and exhibited via graphs. The inhibiting flow velocity is portrayed by the intensifying inputs of buoyancy ratio, magnetic force, Rayleigh number, and eigenvalue. As a consequence of thermophoresis and Brownian motion of nano-particles, the temperature of the liquids initiates to ascend instantly. Because of differentiated viscous effects, the flow velocity for Carreau nanofluid is slower than that of tangent hyperbolic fluid and the temperature behavior is reversed. Further, the magnitude of skin friction factor for tangent hyperbolic nanofluid is almost half ofs that of Carreau nanofluid.Article On bioconvection and mass transpiration of micropolar nanofluid dynamics due to an extending surface in existence of thermal radiations(2021) Baleanu, Dumitru; Abdal, Sohaib; Ali, Rifaqat; Baleanu, Dumitru; Siddique, Imran; 56389This study examines the magnetic effects of heat and mass transmission on the flow of micropolar fluid over a permeable stretching geometry with dilute homogeneous dispersion of nano-particles and gyrotactic microorganisms. A system of coupled highly non-linear PDEs is renovated into corresponding ODEs by using similarity functions. These transmuted equations are resolved for a solution with shooting technique accompanied with Runge-Kutta fourth order. The variations of intricate physical quantities such as temperature, micro-motion, concentration, velocity, and motile micro-organism profiles are evaluated under the influence of the emerging parameters. The velocity profile decreases down with upsurge values of magnetic parameter M while micro-rotation is strengthened and its value becomes higher directly with increments in M. The microorganisms profile depict the diminishing behavior with the growing value of bioconvection Lewis number. These results are useful for obtaining better solutions for heat transfer devices and micropolar fuel cells. Additionally, the impact of the parameter of Brownian motion, Rayleigh number, and the parameter of thermophoresis, Peclet number, and buoyancy ratio parameter were discussed numerically and graphically. Moreover, the numerical results were validated by comparing them with previously obtained exact solution for special cases and acceptable compatibility between the two results is achieved. The findings from this work can be utilized for efficient heat exchangers and thermal balance in micro-electronics.Article On the enhancement of thermal transport of Kerosene oil mixed TiO2and SiO2across Riga wedge ∗(2022) Jarad, Fahd; Siddique, Imran; Jarad, Fahd; Salamat, Nadeem; Abdal, Sohaib; Hamed, Y.S.; Abualnaja, Khadijah M.; Hussain, Sajjad; 234808Efficient thermal transportation in compact heat density gadgets is a prevailing issue to be addressed. The flow of a mono nanofluid (SiO2/Kerosene oil) and hybrid nanofluid (TiO2 + SiO2/Kerosene oil) is studied in context of Riga wedge. The basic purpose of this work pertains to improve thermal conductivity of base liquid with inclusions of nano-entities. The hybrid nanofluid flow over Riga wedge is new aspect of this work. The concentration of new species is assumed to constitute the base liquid to be non-Newtonian. The fundamental formulation of the concentration laws of mass, momentum and energy involve partial derivatives. The associated boundary conditions are taken in to account. Similarity variables are utilized to transform the leading set of equations into ordinary differential form. Shooting procedure combined with Runge-Kutta method is harnessed to attain numerical outcomes. The computational process is run in matlab script. It is seen that the velocity component f′(η) goes upward with exceeding inputs of modified Hartmann number Mh and it slows down when non-dimensional material parameter αh takes large values. Also, Nusselt number - θ′(0) is enhanced with developing values of Eckert number Ec and Biot number Bi.Article Significance of chemical reaction with activation energy for Riga wedge flow of tangent hyperbolic nanofluid in existence of heat source(2021) Jarad, Fahd; Siddique, Imran; Alshomrani, Ali Saleh; Jarad, Fahd; Ud Din, Irfan Saif; Afzal, Saima; 234808This manuscript uncovers the heat and mass transfer of an unsteady tangent hyperbolic nanofluid flow across an extensible Riga wedge under the effects of stagnation point, heat source, and activation energy. The flow computations with modified Hartmann numbers are embedded in this investigation particularly in the unsteady tangent hyperbolic liquid stream scenario. The focus pertains to augment heat conduction in the bulk liquid as heat and mass transport media. The implications of controlling parameters on non-dimensional speed, temperature, as well as concentration profiles are visually portrayed. The governing partial differential equations are modified into non-dimensional forms by reducing the number of independent factors, which are then pursued numerically utilizing the Runge-Kutta method with the shooting tool. The velocity of Newtonian fluid improves as the magnitude of wedge angle parameter βw rises, although it is marginally lower than that of tangent hyperbolic fluid, the temperature of Newtonian fluid intensifies substantially faster than that of tangent hyperbolic fluid for higher values of βw. The skin friction factor increases with alterations to the Hartmann parameter, Weissenberg factor, wedge angle parameter as well as suction parameter. The percentage increase in skin friction factor is 13.3 and 21.93 when modified Hartmann number takes input in the range 0 ≤ Mh ≤ 0.2 and unsteady parameter 0.1 ≤ A ≤ 0.5. The Schmidt number, chemical change, and wedge angle parameters are all designed to boost the Sherwood number.Article Significance of double diffusion for unsteady Carreau micropolar nanofluid transportation across an extending sheet with thermo-radiation and uniform heat source(2021) Jarad, Fahd; Siddique, Imran; Jarad, Fahd; Ali, Rifaqat; Abdal, Sohaib; Hussain, Sajjad; 234808The main objective of this manuscript is to glance into the assets of nanoparticles in the stream of generalized micropolar fluid and Carreau fluid against an intensified elongated surface. In order to assess, the heat and mass diffusion occurrences, the Cattaneo-Christov implications are also experienced in the temperature and concentration computations. In contrast to prior studies, rheological attributes on non-Newtonian fluids are depicted by engaging micropolar fluid and Carreau liquid that reflect a clear difference of transport phenomena. By minimizing the number of independent factors, the regulating equations are transmuted into non-dimensional types, that are then tackled numerically using the RK-4 algorithm along with the shooting strategy. For velocity, micro-rotation, temperature and concentration distributions, a visualization evaluation of the entangled flow parameters is executed. It has been revealed that expanding magnetic and micropolar constraints enhance micro-rotation velocity. The unsteadiness parameter enhances all three physical quantities, surface drag force, Nusselt number, and Sherwood number.