Browsing by Author "Al-Taei, Ali"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Book Part Citation Count: Yılmaz, Murat; Al-Taei, A.; O’Connor, R.V., "A Machine-Based Personality Oriented Team Recommender for Software Development Organizations", Communications In Computer and Information Science, Vol. 543, pp. 75-86, (2015).A Machine-Based Personality Oriented Team Recommender for Software Development Organizations(Springer Verlag, 2015) Yılmaz, Murat; Al-Taei, Ali; O'Connor, Rory V.Hiring the right person for the right job is always a challenging task in software development landscapes. To bridge this gap, software firms start using psychometric instruments for investigating the personality types of software practitioners. In our previous research, we have developed an MBTI-like instrument to reveal the personality types of software practitioners. This study aims to develop a personality-based team recommender mechanism to improve the effectiveness of software teams. The mechanism is based on predicting the possible patterns of teams using a machine-based classifier. The classifier is trained with empirical data (e.g. personality types, job roles), which was collected from 52 software practitioners working on five different software teams. 12 software practitioners were selected for the testing process who were recommended by the classifier to work for these teams. The preliminary results suggest that a personality-based team recommender system may provide an effective approach as compared with ad-hoc methods of team formation in software development organizations. Ultimately, the overall performance of the proposed classifier was 83.3%. These findings seem acceptable especially for tasks of suggestion where individuals might be able to fit in more than one team.Master Thesis Citation Count: AL-TAEİ, A. (2015). Automated classification of game players among the participant profiles in massive open online courses. Yayımlanmamış yüksek lisans tezi. Ankara: Çankaya Üniversitesi Fen Bilimleri Enstitüsü.Automated classification of game players among the participant profiles in massive open online courses(2015) Al-Taei, AliIn recent years, there has been an increasing interest in Massive Open Online Courses (MOOCs). This interest highlights the importance of understanding behavior, traits, and preferences of individuals. Developing such an understanding requires ways for improving the process of MOOC design by adapting innovative techniques such as personality profiling, which have been frequently employed in the field of game development. This study suggests a mechanism to classify MOOC participants into their correspondent Bartle's Massively Multiplayer Online Game (MMOG) player type by using Myers-Briggs Types Indicator (MBTI) as a personality reference. The goal is to explore the profiles of MOOC attendees by using both MBTI and Bartle's MMOG player types for the sake of delivering a distinctive view about the audience of MOOCs. To this end, an online questionnaire which is composed of three dimensions was administered: (i) demographics, (ii) MBTI personality assessment, and (iii) Bartle's player types. Respondent (N=75) replies showed a relationship between a group of personality types and MMOG v playing styles. Furthermore, a machine-learning model was proposed to instantly classify the player types. Ultimately, results (N=67) showed that using Back Propagation (BP) neural network is acceptable for both the training process (performance=100%) and the testing process (performance=91.6%). The results suggest that our approach provides a novel way to asses participants of MOOCs in terms of Bartle's player types. Moreover, our approach of applying BP method provides a novel way to accurately classify participants of MOOCs in terms of Bartle's player types.Conference Object Citation Count: Al-Taei, Ali...et al. "Kitlesel Açık Çevrimiçi Kurslardaki Katılımcı Profillerinin Yapay Sinir Ağı Kullanılarak Sınıflandırılması", Proceedings of 9th Turkish National Software Engineering Symposium (UYMS 2015), İzmir, Turkey.Kitlesel Açık Çevrimiçi Kurslardaki Katılımcı Profillerinin Yapay Sinir Ağı Kullanılarak Sınıflandırılması(2015) Al-Taei, Ali; Yılmaz, Murat; O’Connor, Rory V.; Halıcı, UğurSon yıllarda, özellikle bilgisayar mühendisliği eğitimi alanında, kitlesel açık çevrimiçi kurslara (KAÇK) artan bir ilgi söz konusudur. Bu ilgi bireylerin davranışları, özellikleri ve tercihlerinin anlaşılması öneminin altını çizmektedir. Böyle bir anlayış geliştirmek, sıklıkla oyun geliştirme alanında kullanılan kişilik profilleme gibi yenilikçi teknikleri uyarlayarak KAÇK tasarım sürecini geliştirmek için çeşitli yollar gerektirmektedir. Bu çalışma, bir kişilik referansı olarak Myers-Briggs Tip Göstergesi (MBTG) kullanılarak katılımcıları (özellikle eksik veri durumlarında) sınıflandırmak için bir yöntem önermektedir. Amaç, KAÇK izleyicileri hakkında ayrıştırıcı bir bakış sunmak için KAÇK katılımcı profillerini MBTG kullanarak araştırmaktır. Bu amaçla, bir bilgisayar mühendisliği kursunda 20 soruluk bir çevrimiçi anket kullanılmıştır: Muhatapların (N=75) cevapları yardımıyla katılımcıların kişilik tipleri belirlenmiştir. Dahası, bir makine öğrenimi modeli bireylerin sınıflandırması için önerilmiştir. Sonuçlar, geri yayılımlı (GY) yapay sinir ağının hem eğitim süreci (performans=%100) hem de test süreci için (performans=%93,3) uygun olduğunu göstermiştir. Bu bilgilerin ışığında, yaklaşımımızın MBTG açısından KAÇK katılımcılarının sınıflandırılabilirliklerini araştırmak için kullanılabilecek özgün bir yaklaşım olarak kabul edilebilir.