Browsing by Author "Alsaka, Dina Yaqoob"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation Count: Alsaka, Dina Yaqoob; Arpali, Çağlar; Arpali, Serap A. (2018). "A comparison of iterative Fourier transform algorithms for image quality estimation", Optical Review, Vol.25, No.5, pp.625-637.A comparison of iterative Fourier transform algorithms for image quality estimation(2018) Alsaka, Dina Yaqoob; Arpali, Çağlar; Arpali, Serap Altay; 20809A comparison was established between two iterative Fourier transform algorithms (IFTAs), such as the original Gerchberg–Saxton (GS) and the mixed-region amplitude freedom (MRAF) algorithms, for the hologram reconstruction of different target images through the full reference image quality estimation (IQE) and pixel homogeneity in the Fourier plane presented theoretically and experimentally. The comparison was applied depending upon both algorithms based on a computer-generated hologram (CGH) implemented utilizing a reflective phase-modulated liquid-crystal spatial light modulator (LC-SLM) to obtain the digital kinoform holograms of the desired intensity distributions. These digital holograms were applied to reconstruct the intensity patterns for 852 nm, which represents a laser beam source. The theoretical and experimental results of the reconstructed patterns obtained using the MRAF algorithm were found to be smoother and better than the patterns obtained using the GS algorithm. Unmodulated light beam (dc term) is removed from the reconstructed patterns attributed to digital kinoform holograms of MRAF algorithm as an alternative to the theoretical and experimental results without using any additional optic equipment at the light path. Moreover, this paper discussed the full reference objective quality estimations, such as mean square error (MSE), peak signal-to-noise ratio (PSNR), structural content (SC), normalized absolute error (NAE), normalized cross correlation (NK), and homogeneity of pixels, through the contrast (Cont) and inverse difference moment (IDM) for numerical and experimental results. According to the two desired intensity distributions processed theoretically and experimentally, the results of MRAF algorithm were found to be in the highly accurate recovered phase, the quality of image was enhanced, and the dc term was decreased. Image quality estimation of full reference objective relay on the feedback algorithms experimental attestation has not been implemented yet.Article Citation Count: Alsaka, Dina Yaqoob; Arpali, Caglar; Arpali, Serap Altay, "A comparison of iterative Fourier transform algorithms for image quality estimation", Optical Review, Vol. 25, No. 5, pp. 625-637, (2018)A Comparison of Iterative Fourier Transform Algorithms for Image Quality Estimation(Optical Soc Japan, 2018) Alsaka, Dina Yaqoob; Arpalı, Çağlar; Altay Arpalı, Serap; 20809A comparison was established between two iterative Fourier transform algorithms (IFTAs), such as the original Gerchberg-Saxton (GS) and the mixed-region amplitude freedom (MRAF) algorithms, for the hologram reconstruction of different target images through the full reference image quality estimation (IQE) and pixel homogeneity in the Fourier plane presented theoretically and experimentally. The comparison was applied depending upon both algorithms based on a computer-generated hologram (CGH) implemented utilizing a reflective phase-modulated liquid-crystal spatial light modulator (LC-SLM) to obtain the digital kinoform holograms of the desired intensity distributions. These digital holograms were applied to reconstruct the intensity patterns for 852 nm, which represents a laser beam source. The theoretical and experimental results of the reconstructed patterns obtained using the MRAF algorithm were found to be smoother and better than the patterns obtained using the GS algorithm. Unmodulated light beam (dc term) is removed from the reconstructed patterns attributed to digital kinoform holograms of MRAF algorithm as an alternative to the theoretical and experimental results without using any additional optic equipment at the light path. Moreover, this paper discussed the full reference objective quality estimations, such as mean square error (MSE), peak signal-to-noise ratio (PSNR), structural content (SC), normalized absolute error (NAE), normalized cross correlation (NK), and homogeneity of pixels, through the contrast (Cont) and inverse difference moment (IDM) for numerical and experimental results. According to the two desired intensity distributions processed theoretically and experimentally, the results of MRAF algorithm were found to be in the highly accurate recovered phase, the quality of image was enhanced, and the dc term was decreased. Image quality estimation of full reference objective relay on the feedback algorithms experimental attestation has not been implemented yet.Article Citation Count: Alsaka, Dina Yaqoob;...et.al. (2022). "Dynamic flat-topped laser beam shaping method using mixed region amplitude freedom algorithm", Applied Physics B: Lasers and Optics, Vol.128, No.8.Dynamic flat-topped laser beam shaping method using mixed region amplitude freedom algorithm(2022) Alsaka, Dina Yaqoob; Arpali, Çağlar; Arpali, Serap Altay; Altemimi, Mohammed Fawzi; 20809A dynamic beam shaping method is proposed for the generation of flat-top beams (FTBs) in the far field. Using the mixed-region amplitude freedom algorithm, this new method is used to design the required phase distribution encoded on a spatial light modulator for the generation of FTB profiles. The characteristics of these new beam shaping methods are used as beam parameters, such as the laser beam size, the beam intensity of square FTBs, and the root-mean-square error (RMSE). Using our proposed method, the theoretical performance of beam intensity shaping is improved to an RMSE < 0.02 with a minimum number of iterations of phase reconstruction. Using the phase hologram of dynamic beam shaping, theoretical and experimental comparisons of edge steepness and plateau uniformity were established for the square FTBs of variable beam sizes. It is shown that the dynamic beam shaping of FTBs can produce high intensity uniformity in the plateau region with steep edges, which makes it an effective tool, especially for laser machining applications.