Browsing by Author "Alshehri, Ahmed M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 17Citation - Scopus: 19A comprehensive analysis of the stochastic fractal–fractional tuberculosis model via Mittag-Leffler kernel and white noise(Elsevier, 2022) Rashid, Saima; Jarad, Fahd; Iqbal, Muhammad Kashif; Alshehri, Ahmed M.; Ashraf, Rehana; Jarad, Fahd; 234808; MatematikIn this research, we develop a stochastic framework for analysing tuberculosis (TB) evolution that includes new-born immunization via the fractal-fractional (F-F) derivative in the Atangana-Baleanu sense. The population is divided into four groups by this system: susceptibility S(xi), infectious I(xi), immunized infants V(xi), and restored R(xi). The stochastic technique is used to describe and assess the invariant region, basic reproduction number, and local stability for disease-free equilibrium. This strategy has significant modelling difficulties since it ignores the unpredictability of the system phenomena. To prevent such problems, we convert the deterministic strategy to a randomized one, which seems recognized to have a vital influence by adding an element of authenticity and fractional approach. Owing to the model intricacies, we established the existence-uniqueness of the model and the extinction of infection was carried out. We conducted a number of experimental tests using the F-F derivative approach and obtained some intriguing modelling findings in terms of (i) varying fractional-order (phi) and fixing fractal-dimension (omega), (ii) varying omega and fixing phi, and (iii) varying both phi and omega, indicating that a combination of such a scheme can enhance infant vaccination and adequate intervention of infectious patients can give a significant boost.Article Citation - WoS: 16Citation - Scopus: 15New numerical dynamics of the fractional monkeypox virus model transmission pertaining to nonsingular kernels(Amer inst Mathematical Sciences-aims, 2023) Al Qurashi, Maysaa; Jarad, Fahd; Rashid, Saima; Alshehri, Ahmed M.; Jarad, Fahd; Safdar, Farhat; 234808; MatematikMonkeypox (MPX) is a zoonotic illness that is analogous to smallpox. Monkeypox infections have moved across the forests of Central Africa, where they were first discovered, to other parts of the world. It is transmitted by the monkeypox virus, which is a member of the Poxviridae species and belongs to the Orthopoxvirus genus. In this article, the monkeypox virus is investigated using a deterministic mathematical framework within the Atangana-Baleanu fractional derivative that depends on the generalized Mittag-Leffler (GML) kernel. The system's equilibrium conditions are investigated and examined for robustness. The global stability of the endemic equilibrium is addressed using Jacobian matrix techniques and the Routh-Hurwitz threshold. Furthermore, we also identify a criterion wherein the system's disease-free equilibrium is globally asymptotically stable. Also, we employ a new approach by combining the two-step Lagrange polynomial and the fundamental concept of fractional calculus. The numerical simulations for multiple fractional orders reveal that as the fractional order reduces from 1, the virus's transmission declines. The analysis results show that the proposed strategy is successful at reducing the number of occurrences in multiple groups. It is evident that the findings suggest that isolating affected people from the general community can assist in limiting the transmission of pathogens.