Browsing by Author "Amin, A. Z. M."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article A Computationally Efficient Method For a Class of Fractional Variational and Optimal Control Problems Using Fractional Gegenbauer Functions(Editura Academiei Romane, 2018) Baleanu, Dumitru; Doha, Eid H.; Ezz-Eldien, Samer S.; Abdelkawy, M. A.; Hafez, R. M.; Amin, A. Z. M.; Baleanu, Dumitru; Zaky, M. A.; 56389; MatematikThis paper is devoted to investigate, from the numerical point of view, fractional-order Gegenbauer functions to solve fractional variational problems and fractional optimal control problems. We first introduce an orthonormal system of fractional-order Gegenbauer functions. Then, a formulation for the fractional-order Gegenbauer operational matrix of fractional integration is constructed. An error upper bound for the operational matrix of the fractional integration is also given. The properties of the fractional-order Gegenbauer functions are utilized to reduce the given optimization problems to systems of algebraic equations. Some numerical examples are included to demonstrate the efficiency and the accuracy of the proposed approach.Article Citation - WoS: 21Citation - Scopus: 21A Computationally Efficient Method for A Class of Fractional Variational and Optimal Control Problems Using Fractional Gegenbauer Functions(Editura Acad Romane, 2018) El-Kalaawy, A. A.; Doha, E. H.; Ezz-Eldien, S. S.; Abdelkawy, M. A.; Hafez, R. M.; Amin, A. Z. M.; Zaky, M. A.This paper is devoted to investigate, from the numerical point of view, fractional-order Gegenbauer functions to solve fractional variational problems and fractional optimal control problems. We first introduce an orthonormal system of fractional-order Gegenbauer functions. Then, a formulation for the fractional-order Gegenbauer operational matrix of fractional integration is constructed. An error upper bound for the operational matrix of the fractional integration is also given. The properties of the fractional-order Gegenbauer functions are utilized to reduce the given optimization problems to systems of algebraic equations. Some numerical examples are included to demonstrate the efficiency and the accuracy of the proposed approach.Article Spectral Technique for Solving Variable-Order Fractional Volterra Integro-Differential Equations(Wiley, 2018) Baleanu, Dumitru; Abdelkawy, M. A.; Amin, A. Z. M.; Baleanu, Dumitru; 56389; MatematikThis article, presented a shifted Legendre Gauss-Lobatto collocation (SL-GL-C) method which is introduced for solving variable-order fractional Volterra integro-differential equation (VO-FVIDEs) subject to initial or nonlocal conditions. Based on shifted Legendre Gauss-Lobatto (SL-GL) quadrature, we treat with integral term in the aforementioned problems. Via the current approach, we convert such problem into a system of algebraic equations. After that we obtain the spectral solution directly for the proposed problem. The high accuracy of the method was proved by several illustrative examples.Article Citation - WoS: 58Citation - Scopus: 67Spectral technique for solving variable-order fractional Volterra integro-differential equations(Wiley, 2018) Doha, E. H.; Baleanu, Dumitru; Abdelkawy, M. A.; Amin, A. Z. M.; Baleanu, D.; 56389; MatematikThis article, presented a shifted Legendre Gauss-Lobatto collocation (SL-GL-C) method which is introduced for solving variable-order fractional Volterra integro-differential equation (VO-FVIDEs) subject to initial or nonlocal conditions. Based on shifted Legendre Gauss-Lobatto (SL-GL) quadrature, we treat with integral term in the aforementioned problems. Via the current approach, we convert such problem into a system of algebraic equations. After that we obtain the spectral solution directly for the proposed problem. The high accuracy of the method was proved by several illustrative examples.