Browsing by Author "Asal, Ali Sadeq Hussein"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Master Thesis Gizliliği Koruyan Federated Öğrenme ile Giriş Tespitini Geliştirme: Farklı Mahremiyet ve Artırımlı Öğrenme Entegrasyonu(2025) Asal, Ali Sadeq Hussein; Saran, Ayşe NurdanSiber güvenlikte, Saldırı Tespit Sistemleri (IDS), ağları ve sistemleri kötü niyetli faaliyetleri tespit etmek için tarar ve hassas veriler tehlikeye girmeden tehditleri tanımlamaya yardımcı olur. Makine öğreniminin (ML) tanıtılması, IDS'yi otomatik ve akıllı tehdit algılama mekanizmaları sağlayarak geliştirmiştir. Ancak, Federated Learning (FL) gibi dağıtılmış ortamlarda ML modellerinin eğitimi, model parametrelerinin analizi yoluyla hassas bilgileri açığa çıkarabilir. FL, verileri yerelleştirerek belirli gizlilik sorunlarını hafifletir, ancak gerçek bir gizlilik koruması için yeterli değildir ve geliştirilmesi gereklidir. Özellikle, Artırımlı Öğrenme (IL), IDS'yi yeniden eğitime ihtiyaç duymadan yeni siber güvenlik tehditlerine uyum sağlama yeteneği sunarak iyileştirir. Bu, hesaplama açısından maliyeti düşük tutar ve yeni saldırı davranışlarına hızla uyum sağlar. Özellikle, Federated Differential Privacy Enhanced Model Aggregation adlı bir yöntem öneriyoruz; bu yöntem, federated ML bağlamında hem gizliliği hem de doğruluğu artırmayı hedeflemektedir. Bu yöntem, bir global modelin başlatıldığı ve istemci tarafında eğitimle daha da geliştirildiği bir sunucu-istemci mimarisi kullanır ve güncellemeler güvenli bir şekilde birleştirilir. Ayrıca, veri gizliliğini artırmak için gradyanlara gürültü ekleyen DP-SGD optimizasyonuyla eğitilmiş çok katmanlı bir algılayıcı (MLP) kullandık. Performansı değerlendirdik ve deneysel sonuçlar, önerdiğimiz yaklaşımda sınıf artımlı öğrenmenin doğruluğunun %92,4'e ve özellik artımlı öğrenmenin %99,4'e ulaştığını göstermektedir. Bu sonuçlar, modelimizin yeni verileri iyi bir şekilde öğrenebildiğini ortaya koymaktadır. Süreç, gizliliği koruyucu ve verimli kalmakta olup farklı veri kümesi türleri üzerinde iyi performans sergilemektedir. Bu nedenle, modern çağda bir saldırı tespit sistemi (IDS) için geçerli bir aday olduğuna inanıyoruz.