Browsing by Author "Ayli, Ulku Ece"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 1Citation - Scopus: 1Investigation of aerodynamic and aeroacoustic behavior of bio-inspired airfoils with numerical and experimental methods(Sage Publications Ltd, 2024) Aylı, Ülkü Ece; Guzey, Kaan; Ayli, Ulku Ece; Koçak, Eyup; Kocak, Eyup; Aradag, Selin; 265836; 283455; Makine MühendisliğiThis article presents numerical and experimental studies on the aerodynamic and aeroacoustic characteristics of the NACA0012 profile with owl-inspired leading-edge serrations for aeroacoustic control. The leading-edge serrations under investigation are in a sinusoidal profile with two main design parameters of wavelength and amplitude. The noise-suppressing ability of sinusoidal serrations is a function of several parameters such as amplitude, wavelength, inflow speed, angle of attack, which are examined in this study. Amplitude (A) and wavelength (& lambda;) of the serration are varied between 1.25 and 2.5, 20 < & lambda; < 60, respectively. The corresponding Reynolds numbers are between 1 and 3 x 10(5). The angle of attack for each configuration is changed between 4 & DEG; and 16 & DEG;. Forty different configurations are tested. According to the results, owl-inspired leading-edge serrations can be used as aeroacoustic control add-ons in blade designs for wind turbines, aircraft, and fluid machinery. Results show that the narrower and sharper serrations have a better noise reduction effect. Overall sound pressure level (SPL) reduces up to 20% for the configuration with the largest amplitude and smaller wavelength. The results also showed that serration amplitude had a distinct effect on aeroacoustic performance, whereas wavelength is a function of amplitude. At the smaller angle of attack values, AOA < 8 & DEG;, the lift and drag coefficients are almost the same for both clean and wavy profiles. On the other hand, typically for angle of attack values more than 12 & DEG; (after stall), when the angle of attack is increased, serration adversely affects aerodynamic performance.Article Citation - WoS: 8Citation - Scopus: 8Solar Chimney Power Plant Performance for Different Seasons under Varying Solar Irradiance and Temperature Distribution(Asme, 2021) Ayli, Ulku Ece; Aylı, Ülkü Ece; Ozgirgin, Ekin; Tareq, Maisarh; 265836; 31329; Makine MühendisliğiOne of the most promising renewable energy sources is solar energy due to low cost and low harmful emissions, and from the 1980s, one of the most beneficial applications of solar energy is the utilization of solar chimney power plants (SCPP). Recently, with the advancement in computer technology, the use of computational fluid dynamics (CFD) methodology for studying SCPP has become an extensive, robust, and powerful technique. In light of the above, in this study, numerical simulations of an SCPP through three-dimensional axisymmetric modeling is performed. A numerical model is created using CFD software, and the results are verified with an experimental study from the literature. The amount of solar radiation and surrounding weather (ambient temperature) were analyzed, and the effects of the irradiance and air temperature on the output power of the SCPP were studied. Ambient temperature is considered as one of the most important factors that influence collector efficiency in a negative or a positive manner. Solar irradiance is considered to be the most important factor that has an impact on SCPP performance. The investigation includes the study of the relationship between solar insolation and ambient temperatures during the daytime since the difference between the minimum and maximum power values and the performance are very important considering seasonal changes. According to the results, power values are dependent on the amount of solar radiation as well as the ambient temperature, and the importance of selection of location thus climate for an SCPP is found to affect the design of the SCPP.