Browsing by Author "Baykal, Y."
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Article Annular beam scintillations in non-Kolmogorov weak turbulence(Springer, 2012) Gercekcioglu, H.; Baykal, Y.; 7812In a weakly turbulent atmosphere governed by the non-Kolmogorov spectrum, the on-axis scintillation index is formulated and evaluated when the incidence is an annular Gaussian type. When the power law of the non-Kolmogorov spectrum is varied, the scintillation index first increases, and reaches a peak value, then starts to decrease, and eventually approaches zero. The general trend is that when turbulence has a non-Kolmogorov spectrum with power law larger than the Kolmogorov power law, the scintillation index values become smaller. For all power laws, collimated annular Gaussian beams exhibit smaller scintillations when compared to pure Gaussian beams of the same size. Intensity fluctuations at a fixed propagation distance diminish for the non-Kolmogorov spectrum with a very large power law, irrespective of the focal length and the thickness of optical annular Gaussian sources.Article Beam wander of J 0- and i 0-Bessel Gaussian beams propagating in turbulent atmosphere(2010) Çil, C.Z.; Eyyuboğlu, H.T.; Baykal, Y.; Korotkova, O.; Cai, Y.; 7812Root mean square (rms) beam wander of J 0-Bessel Gaussian and I 0-Bessel Gaussian beams, normalized by the rms beam wander of the fundamental Gaussian beam, is evaluated in atmospheric turbulence. Our formulation is based on the first and the second statistical moments obtained from the Rytov series. It is found that after propagating in atmospheric turbulence, the collimated J 0-Bessel Gaussian and the I 0-Bessel Gaussian beams have smaller rms beam wander than that of the Gaussian beam, regardless of the choice of Bessel width parameter. However, the extent of such an advantage depends on the chosen width parameter, Gaussian source size, propagation distance and the wavelength. Focusing at finite distances of the considered beams causes the rms beam wander to decrease sharply at the propagation distances equal to the focusing parameter.Article Degree of polarization for partially coherent general beams in turbulent atmosphere(Springer, 2007) Eyyuboglu, H. T.; Baykal, Y.; Cai, Y.; 7688; 7812The degree of polarization is found for optical excitations of cosh-Gaussian, cos-Gaussian and annular-Gaussian beams in a turbulent atmosphere. The related formulation is based on the beam coherence polarization matrix. The self and mutual coherence functions appearing in the beam coherence polarization matrix are evaluated, when the above mentioned excitations exhibit partial source coherence for self and cross fields. Plots showing the variation of the degree of polarization are provided versus the propagation length when the source size, displacement parameter, structure constant and the degree of source coherence for self and cross fields change.Article Intensity fluctuations of partially coherent laser beam arrays in weak atmospheric turbulence(Springer, 2011) Arpali, C.; Arpali, S. A.; Baykal, Y.; Eyyuboglu, H. T.; 7812; 7688The intensity fluctuation of a partially coherent laser beam array is examined. For this purpose, the on-axis scintillation index at the receiver plane is analytically formulated via the extended Huygens-Fresnel diffraction integral in conditions of weak atmospheric turbulence. The effects of the propagation length, number of beamlets, radial distance, source size, wavelength of operation and coherence level on the scintillation index are investigated for a horizontal propagation path. It is found that, regardless of the number of beamlets, the scintillation index always rises with an increasing propagation length. If laser beam arrays become less coherent, the scintillation index begins to fall with growing source sizes. Given the same level of partial coherence, slightly less scintillations will occur when the radial distance of the beamlets from the origin is increased. At partial coherence levels, lower scintillations are observed for larger numbers of beamlets. Both for fully and partially coherent laser beam arrays, scintillations will drop on increasing wavelengths.Article Partially coherent elegant Hermite-Gaussian beam in turbulent atmosphere(Springer, 2011) Wang, F.; Cai, Y.; Eyyuboglu, H. T.; Baykal, Y.; 7688; 7812Based on the extended Huygens-Fresnel integral, analytical formulas for the cross-spectral density, mean-squared beam width and angular spread of a partially coherent elegant Hermite-Gaussian (HG) beam in turbulent atmosphere are derived. The evolution properties of the average intensity, spreading and directionality of a partially coherent elegant HG beam in turbulent atmosphere are studied numerically. It is found that the partially coherent elegant HG beam with smaller initial coherence width, larger beam order and longer wavelength is less affected by the atmospheric turbulence. Compared to the partially coherent standard HG beam, the partially coherent elegant HG beam is less affected by turbulence under the same condition. Furthermore, it is found that there exist equivalent partially coherent standard and elegant HG beams, equivalent fully coherent standard and elegant HG beams, and an equivalent Gaussian-Schell-model beam may have the same directionality as a fully coherent Gaussian beam whether in free space or in turbulent atmosphere. Our results can be utilized in short and long atmospheric optical communication systems.Article Propagation of laser array beams in a turbulent atmosphere(Springer Heidelberg, 2007) Cai, Y.; Chen, Y.; Eyyuboglu, H. T.; Baykal, Y.; 7688; 7812The propagation of phase-locked and non-phase-locked laser array beams of radial and rectangular symmetries in a turbulent atmosphere are investigated based on the extended Huygens-Fresnel integral. The beamlet used in our paper for constructing the laser array beams is of elliptical Gaussian mode. Analytical formulae for the average irradiance of phase-locked and non-phase-locked radial and rectangular laser array beams are derived through vector integration and tensor operation. The irradiance properties of these laser array beams in a turbulent atmosphere are studied numerically. It is found that both phase-locked and non-phase-locked radial and rectangular laser array beams eventually become circular Gaussian beams in a turbulent atmosphere, which is much different from their propagation properties in free space. The propagation properties are closely related to the parameters of laser array beams and the structure constant of the turbulent atmosphere.Article Scintillation behavior of Laguerre Gaussian beams in strong turbulence(Springer, 2011) Eyyuboglu, H. T.; Baykal, Y.; Falits, A.; 7688; 7812In strong atmospheric turbulence, the asymptotic on-axis scintillation behaviors of Laguerre Gaussian (LG) beams are examined. To arrive at the strong-turbulence solution, we utilize the existing filtering approach for weak-turbulence solutions and our recently reported weak-turbulence scintillation index formula for LG beams. In the limiting case, our solution correctly predicts the asymptotic strong-turbulence behavior of Gaussian beam wave scintillation. Investigation of the scintillations versus the propagation distance, source size, wavelength and refractive index structure parameter lead to the conclusion that the LG beams with higher order radial modes can provide less scintillation. The results are applicable to long-haul atmospheric optical communication links.