Browsing by Author "Ceylan, Nildag Basak"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 2Citation - Scopus: 9Predicting Financial Failure Of The Turkish Banks(World Scientific Publ Co Pte Ltd, 2006) Doganay, M. Mete; Ceylan, Nildag Basak; Aktas, Ramazan; 112010Banks are the most important financial institutions in Turkey because other financial institutions are not developed efficiently yet. Turkish banks experienced financial difficulties and a substantial amount of banks failed in the past. This event urged the government to initiate measures to prevent banks from getting into financial difficulties. As a result of these measures, Turkish banking system currently seems to be very attractive for the foreign investors willing to invest in this sector. One of the main concerns of the foreign investors is a possibility of a new banking crisis although it is very remote at this time. The purpose of this study is to develop early warning systems predicting the financial failure at least three years ahead of financial date. A number of multivariate statistical models such as multiple regression, discriminant analysis, logit, probit are used. We found that the most appropriate model is logit. The significant variables obtained from the models explain very well the causes of the bank failures. Our models can be used to assist interested parties to predict the probability of financial failure of Turkish banks.Article Citation - WoS: 39Citation - Scopus: 37Prediction of bank financial strength ratings: the case of Turkey(Elsevier Science Bv, 2012) Ogut, Hulisi; Doganay, M. Mete; Ceylan, Nildag Basak; Aktas, Ramazan; 112010; 108611; 1109Bank financial strength ratings have gained widespread popularity especially after the recent financial turmoil. Rating agencies were criticized because of their ratings and failure to predict the bankruptcy of the banks. Based on this observation, we investigate whether the forecast of the rating of bank's financial strength using publicly available data is consistent with those of the credit rating agency. We use the data of Turkish banks for this investigation. We take a country-specific approach because previous studies found that proxies used for environmental factors (political, economic, and financial risk of the country) did not have any explanatory power and it is hard to find international data for other important factors such as franchise value, concentration, and efficiency. We use two popular multivariate statistical techniques (multiple discriminant analysis and ordered logistic regression) to estimate a suitable model and we compare their performances with those of two mostly used data mining techniques (Support Vector Machine and Artificial Neural Network). Our results suggest that our predictions are consistent with those of Moody's financial strength rating in general.. The important factors in rating are found to be profitability (measured by return on equity), efficient use of resources, and funding the businesses and the households instead of the government that shows efficient placement of the funds. (C) 2012 Elsevier B.V. All rights reserved.