Browsing by Author "Davut, Kemal"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article Citation - WoS: 34Citation - Scopus: 37Effect of Post Fabrication Aging Treatment on the Microstructure, Crystallographic Texture and Elevated Temperature Mechanical Properties of In718 Alloy Fabricated by Selective Laser Melting(Elsevier Science Sa, 2022) Bilgin, Guney Mert; Davut, Kemal; Esen, Ziya; Dericioglu, Arcan F.; Ozer, Seren; 52373; 09.01. Ortak Dersler Bölümü; 09. Rektörlük; 01. Çankaya ÜniversitesiThe effect of building direction and post fabrication aging treatment on the microstructure, crystallographic texture and high temperature mechanical properties of Inconel 718 (IN718) alloy fabricated by selective laser melting (SLM) method was investigated. After aging, arc-shaped structures seen in as-fabricated samples dis-appeared and converted into a mixture of columnar and equiaxed grains. Nano-sized gamma '' and/or gamma' precipitates were formed upon aging; however, MC type carbides and Laves phase encountered in as-fabricated samples were not dissolved completely after aging. Moreover, aging did not alter the texture ((001)//building direction (BD)) of as-fabricated samples. Mechanical properties of the alloys under tension were influenced by the build direction, aging time and test temperature. As-fabricated samples produced in vertical direction exhibited higher room temperature strengths with lower ductility due to orientation of overlapped prior melt pools. Room temperature tensile test results revealed that peak aging caused a significant improvement in ultimate tensile strength (UTS), from 1066.5 MPa and 998.4 MPa to 1408.5 MPa and 1330.4 MPa whereas elongation values decreased from 27.5% and 32.2% to 19.6% and 23.7% in vertically and horizontally built samples, respectively. Peak-aged samples (aged at 700 degrees C for 8 h) tested at 600 degrees C displayed serrated regions in their stress-strain curves due to dynamic strain aging (DSA). Although strength values of the samples displayed an expected decrease by temperature, ductility of the samples reduced to minimum at temperatures around 700-800 degrees C, which was attributed to intermediate temperature embrittlement.Article Citation - WoS: 6Citation - Scopus: 7Influence of the Heat Treatment on the Microstructure, Mechanical and High-Temperature Oxidation Behavior of Hastelloy X Alloy Fabricated Via Laser Powder Bed Fusion(Elsevier Science Sa, 2025) Ozer, Seren; Yalcin, Mustafa Alp; Bilgin, Gueney Mert; Davut, Kemal; Esen, Ziya; Dericioglu, Arcan F.; 09.01. Ortak Dersler Bölümü; 09. Rektörlük; 01. Çankaya ÜniversitesiThe effect of building direction and heat treatment on the microstructure, mechanical properties, and high- temperature oxidation behavior of Hastelloy X (HX) alloy fabricated by the laser powder bed fusion (L-PBF) method was studied. Electron backscatter diffraction analyses revealed that the development of textured columnar grains with varying average grain sizes, boundary fractions, and dislocation densities induced the mechanical anisotropy observed in both horizontally and vertically fabricated samples. The yield strength (YS) values of the horizontally and vertically as-fabricated samples were determined as 605.7 +/- 15.9 MPa and 552.3 +/- 8.5 MPa, respectively. The post-processing heat treatment increased the ductility remarkably and reduced YS value down to similar to 445 MPa for all samples by the elimination of microstructural anisotropy and increased grain size subsequent to recrystallization. Oxidation tests conducted at 900 degrees C up to 100 h on as- fabricated samples exhibited severe intergranular oxidation, which was accompanied by the formation of large voids and microcracks as well as spallation of the oxide layer. In contrast, the heat-treatment improved the oxidation resistance of the alloy possibly due to the formation of uniform and dense Cr2O3 layer on the substrate surface.Article Investigations on the Effect of Secondary Treatments on Ti48Al2Cr2Nb Alloy Manufactured by Electron Beam Powder Bed Fusion Method(Elsevier Sci Ltd, 2025) Bilgin, Guney Mert; Ozer, Seren; Davut, Kemal; Esen, Ziya; Dericioglu, Arcan F.; 09.01. Ortak Dersler Bölümü; 09. Rektörlük; 01. Çankaya ÜniversitesiAs-built Ti48Al2Cr2Nb alloy samples produced by electron beam powder bed fusion (PBF-EB) exhibited notable brittleness. The low ductility was attributed to coarse gamma bands aligned perpendicular to the building and tensile direction. Additionally, variations in aluminum content and hardness between the coarse colonies and fine gamma/alpha(2) lamellae contribute to this phenomenon. Electron backscattered diffraction (EBSD) studies revealed a higher amount of dislocation density and inherent strain after PBF-EB manufacturing. Hence, usage of Ti48Al2Cr2Nb alloy in the as-built condition in aviation applications with high loads and demanding environments is not found to be viable. To eliminate these negative aspects and make PBF-EB produced Ti48Al2Cr2Nb alloy available for demanding applications, two distinct post-processing heat treatments; namely, hot isostatic pressing (HIP) and annealing heat treatment (HT) were employed at 1200 degrees C. A comprehensive characterization covering microstructure analysis, EBSD, fracture surface examination, as well as room and high-temperature tensile tests allowed determination of the effect of post-processes. HIPing altered the banded structure observed in the as-built samples by increasing the amount of alpha(2) phase and grain size. On the other hand, HT made the banded structure more pronounced without significantly increasing the amount of alpha(2) phase. HT also strengthened the <001> texture, while HIPing introduced randomization of grains. On the other hand, complete recrystallization is achieved as a result of HT at 1200 degrees C for 2 h, whereas HIPing at the same temperature for 2 h induced only 80.5 % recrystallization. In both post-processes, dislocation density and inherent strain were reduced. Room temperature and high-temperature tensile tests demonstrated that both HIPing and HT eliminated the extreme brittleness of the as-built samples.Article Citation - WoS: 23Citation - Scopus: 24Microstructural and Texture Evolution During Thermo-Hydrogen Processing of Ti6al4v Alloys Produced by Electron Beam Melting(Elsevier Science inc, 2020) Esen, Ziya; Davut, Kemal; Tan, Evren; Gumus, Berkay; Dericioglu, Arcan F.; Dogu, Merve Nur; 52373; 09.01. Ortak Dersler Bölümü; 09. Rektörlük; 01. Çankaya ÜniversitesiThe present study was conducted to reveal the effects of building angles and post heat-treatments (2-step Thermo-Hydrogen Processing (THP) and conventional annealing treatment) on the density, microstructure and texture of Ti6Al4V alloy parts produced by Electron Beam Melting (EBM). The results showed that regardless of the building angle; the density, microstructure and crystallographic texture (defined with respect to building angle) of the as-produced samples were identical; having Widmanstatten a structure and columnar beta-grains which are parallel to building direction. The main texture component for the alpha phase was (10 (1) over bar0)//building direction, and for beta phase (001)//building or heat flow direction. The first step of THP, namely, the hydrogenation step, produced a needle-like microstructure and increased the local misorientations due to lattice distortion. On the other hand, after application of the second step of THP, dehydrogenation step, microstructure was refined, particularly alpha-grains that were larger than 10 mu m and located at grain boundaries. Moreover, THP randomized the crystallographic texture since it involves beta to alpha phase transformation, at which one beta-grain can produce 12 distinct alpha-variants. The grain boundary misorientation distributions also changed in accordance with the microstructural changes during the 2-step THP. On the other hand, annealing coarsened the grain boundary and Widmanstatten alpha phases; moreover, it changed the texture so that the basal planes (0001) rotated 30 degrees around the building direction.
