Browsing by Author "Gokce, Muhsin Caner"
Now showing 1 - 12 of 12
- Results Per Page
- Sort Options
Article Aperture averaging and BER for Gaussian beam in underwater oceanic turbulence(Elsevier Science Bv, 2018) Gokce, Muhsin Caner; Gökçe, Muhsin Caner; Baykal, Yahya; 28643; 7812In an underwater wireless optical communication (UWOC) link, power fluctuations over finite-sized collecting lens are investigated for a horizontally propagating Gaussian beam wave. The power scintillation index, also known as the irradiance flux variance, for the received irradiance is evaluated in weak oceanic turbulence by using the Rytov method. This lets us further quantify the associated performance indicators, namely, the aperture averaging factor and the average bit-error rate (). The effects on the UWOC link performance of the oceanic turbulence parameters, i.e., the rate of dissipation of kinetic energy per unit mass of fluid, the rate of dissipation of mean-squared temperature, Kolmogorov microscale, the ratio of temperature to salinity contributions to the refractive index spectrum as well as system parameters, i.e., the receiver aperture diameter, Gaussian source size, laser wavelength and the link distance are investigated. (c) 2017 Elsevier B.V. All rights reserved.Article Aperture averaging in multiple-input single-output free-space optical systems(Optical Soc Amer, 2016) Gokce, Muhsin Caner; Gökçe, Muhsin Caner; Baykal, Yahya; Uysal, Murat; 28643; 7812; 124615Multiple-input single-output (MISO) techniques are employed in free-space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. In this paper, for the MISO FSO system, a partially coherent radial array and a finite-sized receiver aperture are used at the transmitter and the receiver, respectively. Using the extended Huygens - Fresnel principle, we formulate the average power and the power correlation at the finite-sized slow detector in weak atmospheric turbulence. System performance indicators such as the power scintillation index and the aperture averaging factor are determined. Effects of the source size, ring radius, receiver aperture radius, link distance, and structure constant and the degree of source coherence are analyzed on the performance of the MISO FSO system. In the limiting cases, the numerical results are found to be the same when compared to the existing coherent and partially coherent Gaussian beam scintillation indices. (C) 2016 Optical Society of AmericaArticle Average channel capacity in anisotropic atmospheric non-Kolmogorov turbulent medium(Elsevier, 2019) Ata, Yalcin; Gökçe, Muhsin Caner; Baykal, Yahya; Gokce, Muhsin Caner; 7812The average channel capacity of a free space optical (FSO) communication system running an intensity modulated Gaussian beam is examined in anisotropic non-Kolmogorov atmospheric weak turbulence based on Rytov variance. Results are obtained by employing the log-normal distribution of irradiance fluctuations corresponding to weak turbulence regime. Our results show that average channel capacity increases together with the increase in anisotropy factor in x and y direction, non-Kolmogorov power law exponent, quantum efficiency of photo detector, Gaussian beam source size and the inner scale length. However, the average channel capacity is found to decrease when turbulence strength, link length and noise variance increase.Article Binary Phase Shift Keying-Subcarrier Intensity Modulation Performance in Weak Oceanic Turbulence(Elsevier, 2019) Gokce, Muhsin Caner; Gökçe, Muhsin Caner; Baykal, Yahya; Ata, Yalcin; 7812; 28643The performance analysis of underwater wireless optical communication (UWOC) system that employs binary phase shift keying-subcarrier intensity modulation (BPSK-SIM) is investigated in weak oceanic turbulence. BPSK-SIM Gaussian beam and finite sized positive-intrinsic-negative (PIN) photodetector are employed at the transmitter and at the receiver, respectively. Bit error rate (BER) is taken as the performance indicator and in the evaluation of the BER, the required signal power and the aperture averaged scintillation index are obtained respectively by the use of the extended Huygens-Fresnel principle and the Rytov theory. Considering various noise types in underwater turbulence, BER variations are examined versus the oceanic turbulence parameters and the photodetector parameters, namely receiver aperture diameter, PIN-responsivity, noise factor, load resistor, and the electronic bandwidth. (c) 2019 Elsevier B.V. All rights reserved.Article Bit error rate analysis of MISO FSO systems(Taylor & Francis Ltd, 2016) Gokce, Muhsin Caner; Gökçe, Muhsin Caner; Baykal, Yahya; Uysal, Murat; 28643; 7812; 124615Multiple-input single-output (MISO) systems are employed in free space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. In this paper, we consider a MISO FSO system with practical transmitter and receiver configuration that consists of radial laser array with Gaussian beams and a Gaussian receiver aperture function. We have employed our previously derived formulation of the power scintillation in which Huygens-Fresnel principle was employed. Therefore, we choose system parameters within the range of validity of the wave structure functions. Using the on-off keying modulation and the log-normal probability distribution function, we quantify the average bit error rate (< BER >) of laser array beams in weak turbulence. It is observed that the radial array beams at the transmitter are more advantageous than the single Gaussian beam. However, increasing the number of array beamlets to more than three seems to have negligible effects on < BER >. It is further observed that < BER > decreases when the source size, the ring radius and the receiver aperture radius increase.Article Effects of liver tissue turbulence on propagation of annular beam(Elsevier Gmbh, 2018) Gokce, Muhsin Caner; Gökçe, Muhsin Caner; Baykal, Yahya; 28643; 7812Effects of tissue turbulence on the propagation properties of an annular laser beam is examined. In this respect, the average intensity profile and the beam spread at the observation plane are formulated and evaluated after the annular laser beam propagates through the turbulent liver tissue. In our formulation, the extended Huygens-Fresnel method is utilized with the involvement of the turbulence power spectrum of the liver tissue. Results obtained from the performed simulations include the variations of the received average intensity and the effective beam size of the annular beam against the changes in the liver tissue turbulence and the laser beam parameters, i.e., against the laser wavelength, tissue length, primary and secondary source sizes of the annular laser beam. Our work in this paper will prove to be helpful in obtaining clues to diagnose abnormalities such as cancer and tumor in a liver tissue.Article Error performance of optical wireless communication systems exercising BPSK subcarrier intensity modulation in non-Kolmogorov turbulent atmosphere(Elsevier Science Bv, 2019) Ata, Yalcin; Gökçe, Muhsin Caner; Baykal, Yahya; Gokce, Muhsin Caner; 7812; 28643Subcarrier intensity modulation (SIM) scheme is preferred due to efficient bandwidth usage superiority over other modulation techniques such as on-off keying (OOK), pulse position modulation (PPM). In this paper, we investigate the bit error rate (BER) performance of optical wireless communication (OWC) system using binary phase shift keying (BPSK) SIM in non-Kolmogorov turbulent atmosphere. We pay attention to the weak turbulence conditions by using Rytov approximation and considering that the receiver is a PIN photodetector. Propagating beam type is Gaussian. It is seen that BER performance of the BPSK SIM OWC is significantly affected from non-Kolmogorov power law exponent, load resistor, responsivity of the PIN photodetector, bandwidth, beam source size, turbulence strength and noise factor.Article Fiber coupling efficiency in ocean with adaptive optics corrections(2023) Gokce, Muhsin Caner; Ata, Yalcin; Baykal, Yahya; 7812Underwater optical wireless communication (UOWC) is a very promising technology that enables high-speed data transfer through the use of laser beams in an oceanic turbulent medium. The high-tech fiber optical devices, which are already available in the market, can be integrated with the UOWC systems. When integration is achieved, oceanic turbulence, which distorts the wavefront of the propagating laser beam, plays an important role in reducing the fiber coupling efficiency (FCE), which in turn results in reducing the light power received from the fiber optical components. In this paper, we propose the use of the adaptive optics technique in a UOWC system to mitigate the effects of oceanic turbulence and boost the FCE. For this reason, the field correlation for a Gaussian laser beam is derived by using the Huygens-Fresnel principle. This way, the light power over the coupling lens and the light power accepted by the fiber core are formulated under the effect of adaptive optics corrections, which are repre-sented by the number of Zernike modes. The results demonstrate that under the oceanic turbulence effect, the FCE of the UOWC system employing adaptive optics is always larger than that of the UOWC system employing no adaptive optics.Article M-ary phase shift keying-subcarrier intensity modulation performance in strong oceanic turbulence(Spie-soc Photo-optical instrumentation Engineers, 2019) Gokce, Muhsin Caner; Gökçe, Muhsin Caner; Baykal, Yahya; Ata, Yalcin; 7812In strong oceanic turbulence, we investigate the bit error rate (BER) performance of underwater wireless optical communication links by employing phase shift keying subcarrier intensity modulated Gaussian laser beam at the transmitter and positive-intrinsic-negative photodetector having finite sized aperture at the receiver. Using the extended Huygens-Fresnel principle, which is conventionally used to analyze the optical beam propagation through turbulence, we evaluate the optical intensity and corresponding signal power over the receiver aperture. Gamma-gamma statistical model for the received intensity is adopted due to strong oceanic turbulence and the required aperture averaged scintillation for this model is obtained by the use of asymptotic Rytov theory. In our performance investigation, we consider the effects of various oceanic turbulences, modulation, receiver noise type, and the photodetector parameters on the BER performance. (C) 2019 Society of Photo-Optical Instrumentation Engineers (SPIE).Article Performance analysis of multiple-input multiple-output free-space optical systems with partially coherent Gaussian beams and finite-sized detectors(Spie-soc Photo-optical instrumentation Engineers, 2016) Gokce, Muhsin Caner; Gökçe, Muhsin Caner; Baykal, Yahya; Uysal, Murat; 28643; 7812; 124615Multiple-input multiple-output (MIMO) techniques are employed in free-space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. We consider a MIMO FSO system, which consists of a radial laser array with partially coherent Gaussian beams at the transmitter and a detector array with Gaussian apertures at the receiver. The average power and the power correlation function at the finite-sized receiver apertures are formulated by using the extended Huygens-Fresnel principle in weak atmospheric turbulence. This let us further quantify the performance metrics such as the power scintillation index, the aperture averaging factor, and the average bit error rate (BER) as functions of system parameters. The derived power scintillation equation correctly reduces to the existing coherent and partially coherent Gaussian beam scintillation indices in the limiting cases. Using the performance metrics, we analyze the effect of various practical system parameters on the performance of a MIMO FSO system. Practical system parameters include the transmitter and receiver ring radius, number of beamlets, number of finite-aperture receivers, source size, degree of source coherence, receiver aperture radius, link distance, and the structure constant of atmosphere. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)Article Performance of M-ary pulse position modulation for aeronautical uplink communications in an atmospheric turbulent medium(Optical Soc Amer, 2019) Ata, Yalcin; Gökçe, Muhsin Caner; Baykal, Yahya; Gokce, Muhsin Caner; 7812This paper discusses the bit-error-rate (BER) performance of an aeronautical uplink optical wireless communication system (OWCS) when a Gaussian beam is employed and the M-ary pulse position modulation technique is used in an atmospheric turbulent medium. Weak turbulence conditions and log-normal distribution are utilized. The Gaussian beam is assumed to propagate on a slant path, the transmitter being ground-based, and the airborne receiver is on-axis positioned. Variations of BER are obtained against the variations in the link length, Gaussian beam source size, zenith angle, wind speed, wavelength, modulation order, data bit rate, equivalent load resistor, avalanche photodetector gain, and detector quantum efficiency. It is observed that the performance of the aeronautical uplink OWCS is affected from atmospheric turbulence significantly. (C) 2019 Optical Society of AmericaArticle Scintillation analysis of multiple-input single-output underwater optical links(Optical Soc Amer, 2016) Gokce, Muhsin Caner; Gökçe, Muhsin Caner; Baykal, Yahya; 28643; 7812Multiple-input single-output (MISO) techniques are employed in underwater wireless optical communication (UWOC) links to mitigate the degrading effects of oceanic turbulence. In this paper, we consider a MISO UWOC system which consists of a laser beam array as transmitter and a point detector as receiver. Our aim is to find the scintillation index at the detector in order to quantify the system performance. For this purpose, the average intensity and the average of the square of the intensity are derived in underwater turbulence by using the extended Huygens-Fresnel principle. The scintillation index and the average bit-error-rate (< BER >) formulas presented in this paper depend on the oceanic turbulence parameters, such as the rate of dissipation of the mean-squared temperature, rate of dissipation of kinetic energy per unit mass of fluid, Kolmogorov microscale, and the ratio of temperature to salinity contributions to the refractive index spectrum, the link length, and the wavelength. Recently, we have derived an equivalent structure constant of atmospheric turbulence and expressed it in terms of the oceanic turbulence parameters [Appl. Opt. 55, 1228 (2016)]. In the formulation in this paper, this equivalent structure constant is utilized, which enables us to employ the existing similar formulation valid in atmospheric turbulence. (C) 2016 Optical Society of America