Browsing by Author "Gulgec, M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 0A parametric study on the elastic-plastic deformation of a centrally heated two-layered composite cylinder with free ends(Polish Acad Sciences inst Fundamental Technological Research, 2016) Yalcin, F.; Gülgeç, Müfit; Ozturk, A.; Gulgec, M.; 4168In this paper, an elastic-plastic deformation of a centrally heated two-layered composite cylinder with free ends subjected to uniformly distributed internal energy generation within an inner cylinder is studied using Tresca's yield condition and its associated flow rule. Stress, strain and displacement distributions in the composite cylinder made of elastic-perfectly plastic material are derived considering the influence of geometric parameters as well as material properties such as yield strength, modulus of elasticity, Poisson's ratio, coefficient of thermal conduction and coefficient of thermal expansion. Yielding starts at the outer boundary or at the axis corresponding to an 'edge regime' of Tresca's prism in both cases. Propagations of the plastic regions are studied due to an increase of a heat generation.Conference Object Citation - Scopus: 2Determination of onset of yield due to material properties in a heat generating two-layered compound cylinder(2013) Ozturk, A.; Gülgeç, Müfit; Gulgec, M.; 4168In this theoretical study, based on Tresca's yield criterion and its associated flow rule, the elastic deformation of a centrally heated compound cylinder with fixed ends is investigated analytically by taking into consideration not only the geometrical but also the material parameters such as yield strength, modulus of elasticity, Poisson's ratio, thermal conductivity and coefficient of thermal expansion. These material parameters are assumed to be independent of the temperature. The compound cylinder is assumed to be very long such that axisymmetric condition exists. Both of the constituent materials of the two layers are supposed to be elastic-perfectly plastic materials. There is heat generation in the interior solid cylinder but no heat generation in the outer hollow cylinder. Both of the cylinders are assumed to be bounded perfectly at the interface. Elastic stress analysis is performed to prevent yield in the compound cylinder. © (2013) Trans Tech Publications, Switzerland.