Browsing by Author "Keceli, Ali Seydi"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article Citation - WoS: 3Citation - Scopus: 6A shallow 3D convolutional neural network for violence detection in videos(Cairo Univ, Fac Computers & information, 2024) Dündar, Naz; Dundar, Naz; Keceli, Ali Seydi; Sever, Hayri; Kaya, Aydin; Sever, Hayri; 366608; 11916; Yazılım Mühendisliği; Bilgisayar MühendisliğiWith the recent worldwide statistical rise in the amount of public violence, automated violence detection in surveillance cameras has become a matter of high importance. This work introduces an end-to-end, trainable 3D Convolutional Neural Network (3D CNN) for detecting violence in video footage. The proposed network is inherently capable of processing both spatial and temporal information, thereby obviating the need for additional models that would introduce higher computational requirements and complexity. This work has two main contributions: 1) developing a lightweight 3D CNN suitable for inference on edge devices as mobile systems, and 2) a comprehensive explanation of all components comprising a CNN model, thereby enhances model interpretability. Experiments were conducted to assess the performance of the proposed model using a consolidated dataset combining four benchmark datasets. The results of the experiments support the asserted contributions, which are discussed in detail.Conference Object Citation - WoS: 2Citation - Scopus: 2ADS-B Attack Classification using Machine Learning Techniques(Ieee, 2021) Kacem, Thabet; Kaya, Aydin; Keceli, Ali Seydi; Catal, Cagatay; Wijsekera, Duminda; Costa, Paulo; 35304Automatic Dependent Surveillance Broadcast (ADS-B) is one of the most prominent protocols in Air Traffic Control (ATC). Its key advantages derive from using GPS as a location provider, resulting in better location accuracy while offering substantially lower deployment and operational costs when compared to traditional radar technologies. ADS-B not only can enhance radar coverage but also is a standalone solution to areas without radar coverage. Despite these advantages, a wider adoption of the technology is limited due to security vulnerabilities, which are rooted in the protocol's open broadcast of clear-text messages. In spite of the seriousness of such concerns, very few researchers attempted to propose viable approaches to address such vulnerabilities. In addition to the importance of detecting ADS-B attacks, classifying these attacks is as important since it will enable the security experts and ATC controllers to better understand the attack vector thus enhancing the future protection mechanisms. Unfortunately, there have been very little research on automatically classifying ADS-B attacks. Even the few approaches that attempted to do so considered just two classification categories, i.e. malicious message vs not malicious message. In this paper, we propose a new module to our ADS-Bsec framework capable of classifying ADS-B attacks using advanced machine learning techniques including Support Vector Machines (SVM), Decision Tree, and Random Forest (RF). Our module has the advantage that it adopts a multi-class classification approach based on the nature of the ADS-B attacks not just the traditional 2-category classifiers. To illustrate and evaluate our ideas, we designed several experiments using a flight dataset from Lisbon to Paris that includes ADS-B attacks from three categories. Our experimental results demonstrated that machine learning-based models provide high performance in terms of accuracy, sensitivity, and specificity metrics.Article Citation - WoS: 32Citation - Scopus: 42Development of a recurrent neural networks-based calving prediction model using activity and behavioral data(Elsevier Sci Ltd, 2020) Keceli, Ali Seydi; Catal, Cagatay; Kaya, Aydin; Tekinerdogan, Bedir; 3530Accurate prediction of calving time in dairy cattle is crucial for dairy herd management to reduce risks like dystocia and pain. Prediction of calving using traditional, manual observation such as observing breeding records and visual cues, however, is a complicated and error-prone task whereby even experts can fail to provide a proper prediction. Moreover, manual prediction does not scale for larger farms and becomes very soon time-consuming, inefficient, and costly. In this context, automated solutions are considered to be promising to provide both better and more efficient predictions, thereby supporting the health of the dairy cows and reducing the unnecessary overhead for farmers. Although the first automated solutions appear to have mainly focused on statistical solutions, currently, machine learning approaches are now increasingly being considered as a feasible and promising approach for accurate prediction of calving. In this context, the objective of this study is to develop machine learning-based prediction models that provide higher performance compared to the existing tools, methods, and techniques. This study shows that the calving of the cattle can be predicted by applying several behaviors of cattle, behavioral monitoring sensors, and machine learning models. Bi-directional Long Short-Term Memory (Bi-LSTM) method has been applied for the prediction of the calving day, and the RusBoosted Tree classifier has been used to predict the remaining 8 h before calving. The experimental results demonstrated that Bi-LSTM provides better performance compared to the LSTM algorithm in terms of classification accuracy, while the RusBoosted Tree algorithm predicts the remaining 8 h accurately before calving. Furthermore, Recurrent Neural Networks provide high performance for the prediction of calving day.Article Citation - WoS: 17Citation - Scopus: 25Sensor Failure Tolerable Machine Learning-Based Food Quality Prediction Model(Mdpi, 2020) Kaya, Aydin; Keceli, Ali Seydi; Catal, Cagatay; Tekinerdogan, Bedir; 3530For the agricultural food production sector, the control and assessment of food quality is an essential issue, which has a direct impact on both human health and the economic value of the product. One of the fundamental properties from which the quality of the food can be derived is the smell of the product. A significant trend in this context is machine olfaction or the automated simulation of the sense of smell using a so-called electronic nose or e-nose. Hereby, many sensors are used to detect compounds, which define the odors and herewith the quality of the product. The proper assessment of the food quality is based on the correct functioning of the adopted sensors. Unfortunately, sensors may fail to provide the correct measures due to, for example, physical aging or environmental factors. To tolerate this problem, various approaches have been applied, often focusing on correcting the input data from the failed sensor. In this study, we adopt an alternative approach and propose machine learning-based failure tolerance that ignores failed sensors. To tolerate for the failed sensor and to keep the overall prediction accuracy acceptable, a Single Plurality Voting System (SPVS) classification approach is used. Hereby, single classifiers are trained by each feature and based on the outcome of these classifiers, and a composed classifier is built. To build our SPVS-based technique, K-Nearest Neighbor (kNN), Decision Tree, and Linear Discriminant Analysis (LDA) classifiers are applied as the base classifiers. Our proposed approach has a clear advantage over traditional machine learning models since it can tolerate the sensor failure or other types of failures by ignoring and thus enhance the assessment of food quality. To illustrate our approach, we use the case study of beef cut quality assessment. The experiments showed promising results for beef cut quality prediction in particular, and food quality assessment in general.