Browsing by Author "Mat, Abdullah Uğur"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Master Thesis Matris Çözümlemesi Tabanlı Öneri Sistemlerinin Geliştirilmesi: Seyahat Öneri Sistemleri Üzerine Karşılaştırmalı Bir Çalışma(2024) Mat, Abdullah Uğur; Saran, Ayşe Nurdan; 06.01. Bilgisayar Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiÖneri sistemlerinin etkisi ve yararlılığı artmaya devam ettikçe, çeşitli uygulamalardaki önemi giderek daha belirgin hale gelmektedir. Bu nedenle, artan talep ve beklentileri karşılayacak hem verimli hem de yüksek doğruluğa sahip öneri sistemlerinin tasarımı ve uygulanması hayati önem taşımaktadır. Bu çalışma, bir seyahat tahmini öneri sistemleri yarışmasında birincilik ödülü alan bir modele odaklanmaktadır. Amacı, kullanılan modelin veri seti ile olan korelasyonu ve uygulanan azaltılmış veri setinin başarı oranı üzerindeki etkisinin model performansını etkileyip etkilemediğini araştırmaktır. Kaynak kullanımını azaltmak amacıyla veri setinde değişiklikler yapılmıştır. Genelde kullanılan yöntemlerin aksine, veri seti rastgele ve seçici azaltma yöntemleri kullanılarak beşte bir oranına kadar azaltılmış ve sonuçlar gözlemlenmiştir. Veri setinin rastgele azaltılması başarı oranında düşüşe neden olurken, yöntembilimsel azaltma yani seçimli azaltma başarı oranını önemli ölçüde artırmıştır. Orijinal modelde kullanılan derin öğrenme algoritmaları yerine, aynı ilkeleri kullanan başka bir algoritma olan Long Short-Term Memory (LSTM) kullanılmıştır. Gated Recurrent Unit (GRU) ve LSTM algoritmalarının veri seti üzerindeki etkileri de araştırılmıştır. Bu veri setleri için GRU algoritması, LSTM'den daha doğru sonuçlar üretmiştir. Embedding katmanlarında yeni modeller geliştirilmiş ve sonuçlar gözlemlenmiştir. Ayrıca, model tarafından kullanılan optimizatör değiştirilmiş ve diğer optimizatörlerin performansı değerlendirilmiştir. Optimizatörler, donanım üzerinde geniş bir yelpazede etkiler göstermiştir. Orjinal modelin elde ettiği başarı 0.5664 iken bu çalışmada yapılan deneylerde en yüksek ve en muteber 0.6654 başarıma ulaşılmıştır. Modellerde, optimizatörlerde ve özellik mühendisliğinde yapılan değişikliklerin etkili öneri sistemlerinin sürdürülebilirliği açısından yararlı olabileceğini savunuyoruz.
