Browsing by Author "Rahman, Mati Ur"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Article Citation - WoS: 21Citation - Scopus: 25Dynamics of Fractional Order Delay Model of Coronavirus Disease(Amer inst Mathematical Sciences-aims, 2022) Jarad, Fahd; Rahman, Mati Ur; Ahmad, Shabir; Riaz, Muhammad Bilal; Jarad, Fahd; MatematikThe majority of infectious illnesses, such as HIV/AIDS, Hepatitis, and coronavirus (2019-nCov), are extremely dangerous. Due to the trial version of the vaccine and different forms of 2019-nCov like beta, gamma, delta throughout the world, still, there is no control on the transmission of coronavirus. Delay factors such as social distance, quarantine, immigration limitations, holiday extensions, hospitalizations, and isolation are being utilized as essential strategies to manage the outbreak of 2019-nCov. The effect of time delay on coronavirus disease transmission is explored using a non-linear fractional order in the Caputo sense in this paper. The existence theory of the model is investigated to ensure that it has at least one and unique solution. The Ulam-Hyres (UH) stability of the considered model is demonstrated to illustrate that the stated model's solution is stable. To determine the approximate solution of the suggested model, an efficient and reliable numerical approach (Adams-Bashforth) is utilized. Simulations are used to visualize the numerical data in order to understand the behavior of the different classes of the investigated model. The effects of time delay on dynamics of coronavirus transmission are shown through numerical simulations via MATLAB-17.Conference Object Citation - WoS: 0Citation - Scopus: 0Fractional Order Computing and Modeling with Portending Complex Fit Real-World Data(Springer international Publishing Ag, 2023) Karaca, Yeliz; Baleanu, Dumitru; Rahman, Mati Ur; Baleanu, Dumitru; 56389; MatematikFractional computing models identify the states of different systems with a focus on formulating fractional order compartment models through the consideration of differential equations based on the underlying stochastic processes. Thus, a systematic approach to address and ensure predictive accuracy allows that the model remains physically reasonable at all times, providing a convenient interpretation and feasible design regarding all the parameters of the model. Towards these manifolding processes, this study aims to introduce new concepts of fractional calculus that manifest crossover effects in dynamical models. Piecewise global fractional derivatives in sense of Caputo and Atangana-Baleanu-Caputo (ABC) have been utilized, and they are applied to formulate the Zika Virus (ZV) disease model. To have a predictive analysis of the behavior of the model, the domain is subsequently split into two subintervals and the piecewise behavior is investigated. Afterwards, the fixed point theory of Schauder and Banach is benefited from to prove the existence and uniqueness of at least one solution in both senses for the considered problem. As for the numerical simulations as per the data, Newton interpolation formula has been modified and extended for the considered nonlinear system. Finally, graphical presentations and illustrative examples based on the data for various compartments of the systems have been presented with respect to the applicable real-world data for different fractional orders. Based on the impact of fractional order reducing the abrupt changes, the results obtained from the study demonstrate and also validate that increasing the fractional order brings about a greater crossover effect, which is obvious from the observed data, which is critical for the effective management and control of abrupt changes like infectious diseases, viruses, among many more unexpected phenomena in chaotic, uncertain and transient circumstances.Article Citation - WoS: 17Citation - Scopus: 18Fractional Order Mathematical Model of Serial Killing with Different Choices of Control Strategy(Mdpi, 2022) Rahman, Mati Ur; Jarad, Fahd; Ahmad, Shabir; Arfan, Muhammad; Akgul, Ali; Jarad, Fahd; 234808; MatematikThe current manuscript describes the dynamics of a fractional mathematical model of serial killing under the Mittag-Leffler kernel. Using the fixed point theory approach, we present a qualitative analysis of the problem and establish a result that ensures the existence of at least one solution. Ulam's stability of the given model is presented by using nonlinear concepts. The iterative fractional-order Adams-Bashforth approach is being used to find the approximate solution. The suggested method is numerically simulated at various fractional orders. The simulation is carried out for various control strategies. Over time, all of the compartments demonstrate convergence and stability. Different fractional orders have produced an excellent comparison outcome, with low fractional orders achieving stability sooner.Article Citation - WoS: 38Citation - Scopus: 37On fractional-order symmetric oscillator with offset-boosting control(Vilnius Univ, inst Mathematics & informatics, 2022) Xu, Changjin; Baleanu, Dumitru; Rahman, Mati Ur; Baleanu, Dumitru; 56389; MatematikThis article analyzes the dynamical evolution of a three-dimensional symmetric oscillator with a fractional Caputo operator. The dynamical properties of the considered model such as equilibria and its stability are also presented. The existence results and uniqueness of solutions for the suggested model are analyzed using the tools from fixed point theory. The symmetric oscillator is analyzed numerically and graphically with various fractional orders. It is observed that the fractional operator has a significant impact on the evolution of the oscillator dynamics showing that the system has a limit-cycle attractor. Offset-boosting control phenomena in the system are also studied with different orders and parameters.Article Piecewise Fractional Analysis of the Migration Effect in Plant-Pathogen Interactions(2023) Baleanu, Dumitru; Rahman, Mati Ur; Arfan, Muhammad; Baleanu, Dumitru; MatematikThis study introduces several updated results for the piecewise plant-pathogen-herbivore interactions model with singular-type and nonsingular fractional-order derivatives. A piecewise fractional model has developed to describe the interactions between plants, disease, (insect) herbivores, and their natural enemies. We derive essential findings for the aforementioned problem, specifically regarding the existence and uniqueness of the solution, as well as various forms of Ulam Hyers (U-H) type stability. The necessary results were obtained by utilizing fixed-point theorems established by Schauder and Banach. Additionally, the U-H stabilities were determined based on fundamental principles of nonlinear analysis. To implement the model as an approximate piecewise solution, the Newton Polynomial approximate solution technique is employed. The applicability of the model was validated through numerical simulations both in fractional as well as piecewise fractional format. The motivation of our article is that we have converted the integer order problem to a global piecewise and fractional order model in the sense of Caputo and Atangana-Baleanu operators and investigate it for existence, uniqueness of solution, Stability of solution and approximate solution along with numerical simulation for the validity of our obtained scheme.