Browsing by Author "Sakin, Shaimaa"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 13Citation - Scopus: 14Experimental and numerical investigation of RC column strengthening with CFRP strips subjected to low-velocity impact load(Techno-press, 2021) Mercimek, Omer; Anil, Ozgur; Ghoroubi, Rahim; Sakin, Shaimaa; Yilmaz, Tolga; 306045Reinforced concrete (RC) square columns are vulnerable to sudden dynamic impact loadings such as the vehicle crash to the bridges of highway or seaway, rock fall, the collision of masses with the effect of flood and landslide. In this experimental study RC square columns strengthened with and without CFRP strip subjected to sudden low velocity lateral impact loading were investigated. Drop-hammer testing machine was used to apply the impact loading to RC square columns. The test specimens were manufactured with square cross sections with 1/3 geometric scale. In scope of the study, 6 test specimens were manufactured and tested. The main variables considered in the study were the application point of impact loading, and CFRP strip spacing. A 9.0 kg mass was allowed to fall freely from a height of 1.0 m to apply the impact loading on the columns. During the impact tests, accelerations, impact force, column mid-point displacements and CFRP strip strains measurements were taken. The general behavior of test specimens, collapse mechanisms, acceleration, displacement, impact load and strain time relationships were interpreted, and the load displacement relationships were obtained. The data from the experimental study was used to investigate the effect of variables on the impact performances of RC columns. It has been observed that the strengthening method applied to reinforced concrete columns, which are designed with insufficient shear strength, insufficient shear reinforcement and produced with low strength concrete, using CFRP strips significantly improves the behavior of the columns under the effect of sudden dynamic impact loading and increases their performance. As a result of the increase in the hardness and rigidity of the specimens strengthened by wrapping with CFRP strips, the accelerations due to the impact loading increased, the displacements decreased and the number of shear cracks formed decreased and the damage was limited. Moreover, the finite element analyses of tested specimens were performed using ABAQUS software to further investigate the impact behavior.Article Citation - WoS: 9Citation - Scopus: 9Experimental investigation of bonding behavior of anchoraged timber-to-timber joint(Springernature, 2021) Ghoroubi, Rahim; Mercimek, Omer; Sakin, Shaimaa; Anil, Ozgur; 306045The comprehensive experimental study examining the general load-displacement behavior, stress distributions and shear stress-shear-displacement behaviors in the connection area when wood structural elements are combined with adhesive or adhesive with mechanical anchorages have been found in very limited number of studies in the literature. Therefore, an experimental study was planned. In this study, the general load-displacement behavior of the timber connection regions which are connected by adhesive and mechanical anchorages together with adhesive, with varying lengths of 180, 240 and 350 mm are investigated experimentally. Besides, the effect of changing the number and location of mechanical anchorages used in the connection area on the general load-displacement behavior and shear stress-shear-displacement behavior was also investigated. Using the load-displacement graphs obtained as a result of the experimental study, a generalized material model is proposed for the shear stress-shear-displacement interfacial adhesion surface for wood-wood junction points. This material model, which is proposed for wood-wood connection points with mechanical anchors, is a model that can be useful and can be used in the analysis of structural systems containing such connections using finite element software. It is thought that the overall capacity and load-displacement behavior of structural systems containing such connection points can be calculated more realistically using the proposed interfacial material model.Article Citation - WoS: 13Citation - Scopus: 13Novel bond-slip model between concrete and angular CFRP fan type anchoraged CFRP strip(Taylor & Francis Ltd, 2022) Ghoroubi, Rahim; Mercimek, Omer; Sakin, Shaimaa; Anil, OzgurOne of the most important design approaches in the repairing/strengthening details is using CFRP (Carbon Fiber Reinforced Polymer) to delay the debonding of the CFRP strips/plates from the surface to take full advantage of the CFRP reinforcement. Compared to non-anchored strips, research studies regarding bond-slip models developed for fan type CFRP anchors and anchored CFRP strips to strengthen details are limited in the related literature review. However, in studies on this subject, anchors are placed at 90 degrees to the axial tensile force applied to the CFRP strips. The ultimate load-bearing capacity and bond-slip models of CFRP strips with the different angled CFRP fan type anchor under axial tensile force have not been found in the literature review. Within the study's scope, 28 angled CFRP strip test specimens were produced and then tested under the effect of monotonically increasing axial tensile force with an experimental setup designed by the authors. The variables examined in this study were the concrete compressive power, the CFRP strip's width, the number of the CFRP anchor fan type, and the angle of the anchor placed on the CFRP strip. As a result of the study, an equation was proposed for calculating the ultimate load-bearing capacity of angled anchored CFRP strips and angled anchored CFRP strips. Finally, a new proposal for the bond-slip model was developed. It is thought that the new interface bond-slip model developed for CFRP strips with different angles will make an important contribution to the literature. It can be used in finite element analysis to realistically analyze the capacities and load-displacement behavior of reinforced concrete structural elements by strengthening such strips.