Browsing by Author "Sherif, El-Sayed M."
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Article Citation Count: Khan, Umair;...et.al. (2022). "An exact solution of a Casson fluid flow induced by dust particles with hybrid nanofluid over a stretching sheet subject to Lorentz forces", Waves In Random And Complex Media.An exact solution of a Casson fluid flow induced by dust particles with hybrid nanofluid over a stretching sheet subject to Lorentz forces(2022) Khan, Umair; Mebarek-Oudina, Fateh; Zaib, Aurang; Ishak, Anuar; Abu Bakar, Sakhinah; Sherif, El-Sayed M.; Baleanu, Dumitru; 56389The concept of a hybrid nanofluid has piqued the interest of numerous researchers due to its potential for increased thermal properties, which results in high transfer rates. Hybrid nanofluids are used in heat transport systems such as electronic cooling, and applications in biomedical and pharmaceutical relief. Thus, the present paper inspects the impact of Lorentz forces on the Casson fluid flow of water-based Fe3O4-MWCNT hybrid nanofluid induced by dust particles from a stretching sheet. The leading PDEs are changed into ODEs by employing similarity variables and then achieving an exact solution for these transformed ODEs. The impacts of distinct physical constraints including fluid interaction particle parameter, Casson parameter, and magnetic parameter on the dust velocity and fluid velocity for normal nanofluid (Fe3O4/H2O) and hybrid nanofluid (Fe3O4-MWCNT/ H2O) are addressed in detail. The present analytic solution shows a strong correlation with earlier published numerical studies in limited cases.Article Citation Count: Khan, U...et al. (2020). "Comparative Investigation On Mhd Nonlinear Radiative Flow Through A Moving Thin Needle Comprising Two Hybridized Aa7075 and Aa7072 Alloys Nanomaterials Through Binary Chemical Reaction With Activation Energy",Journal of Materials Research and Technology.Comparative Investigation On Mhd Nonlinear Radiative Flow Through A Moving Thin Needle Comprising Two Hybridized Aa7075 and Aa7072 Alloys Nanomaterials Through Binary Chemical Reaction With Activation Energy(Elsevier Editora LTD., 2020) Khan, Umair; Zaib, Aurang; Khan, Ilyas; Baleanu, Dumitru; Sherif, El-Sayed M.; 56389The intention of the current study is analyzing the significance of nonlinear radiation on magnetic field involving hybrid AA7075 and AA7072 alloys nanomaterials through thin needle. The scenario has been modeled mathematically by captivating the binary chemical reaction and activation energy. Similarity variables are deployed to change the system of PDE's into nonlinear ODE's and subsequently solved these equations through bvp4c solver. Influence of distinct material parameters on the velocity, concentration and temperature along with the correlated engineering features quantities such as drag force, heat and mass transfer rate are obtained and demonstrated via plots. The velocity of the liquid is declining function of magnetic field, while the temperature augments. In addition, obtained numerical results are contrasted through the available literature and appeared to be in admirable harmony. The current investigation shows the important features in solar hybrid alloy nanomaterials systems and aircraft technology.Article Citation Count: Khan, Umair;...et.al. (2022). "Computational simulation of cross-flow of Williamson fluid over a porous shrinking/stretching surface comprising hybrid nanofluid and thermal radiation", AIMS Mathematics, Vol.7, No.4, pp.6489-6515.Computational simulation of cross-flow of Williamson fluid over a porous shrinking/stretching surface comprising hybrid nanofluid and thermal radiation(2022) Khan, Umair; Zaib, Aurang; Bakar, Sakhinah Abu; Ishak, Anuar; Baleanu, Dumitru; Sherif, El-Sayed M.; 56389Recent nanotechnology advancements have created a remarkable platform for the development of a better performance of ultrahigh coolant acknowledged as nanofluid for numerous industrial and engineering technologies. The current study aims to examine the boundary-layer cross-flow of Williamson fluid through a rotational stagnation point towards either a shrinking or stretching permeable wall incorporated by a hybrid nanofluid. The shape factors along with the radiation effect are also taken into account. The contained boundary layers are the type of stream-wise by shrinking/stretching process along with the sheet. Employing the suitable transformations, the partial differential equations (PDEs) are transmuted to similarity (ordinary) differential equations (ODEs). The transmuted system of ODEs is worked out by using a built-in package bvp4c in MATLAB for distinct values of pertaining parameters. Dual (first and second branch) outcomes are found for the shrinking surface. The results suggest that the inclusion of hybrid particles uplifts the drag force as well as the heat transfer in both solutions. In addition, the Weissenberg number accelerates the separation. Moreover, the effect of suction permits the friction factor and heat transfer to improve significantly at the porous shrinking/stretching sheet of hybrid nanofluid.Article Citation Count: Yan, Liang...et al. (2020). "Dual Solutions and Stability Analysis of Magnetized Hybrid Nanofluid with Joule Heating and Multiple Slip Conditions", Processes, Vol. 8, No. 3.Dual Solutions and Stability Analysis of Magnetized Hybrid Nanofluid with Joule Heating and Multiple Slip Conditions(2020) Yan, Liang; Dero, Sumera; Khan, Ilyas; Mari, Irshad Ali; Baleanu, Dumitru; Nisar, Kottakkaran Soopp; Sherif, El-Sayed M.; Abdo, Hany S.; 56389This paper investigates the steady, two dimensional, and magnetohydrodynamic flow of copper and alumina/water hybrid nanofluid on a permeable exponentially shrinking surface in the presence of Joule heating, velocity slip, and thermal slip parameters. Adopting the model of Tiwari and Das, the mathematical formulation of governing partial differential equations was constructed, which was then transformed into the equivalent system of non-linear ordinary differential equations by employing exponential similarity transformation variables. The resultant system was solved numerically using the BVP4C solver in the MATLAB software. For validation purposes, the obtained numerical results were compared graphically with those in previous studies, and found to be in good agreement, as the critical points are the same up to three decimal points. Based on the numerical results, it was revealed that dual solutions exist within specific ranges of the suction and magnetic parameters. Stability analysis was performed on both solutions in order to determine which solution(s) is/are stable. The analysis indicated that only the first solution is stable. Furthermore, it was also found that the temperature increases in both solutions when the magnetic parameter and Eckert number are increased, while it reduces as the thermal slip parameter rises. Furthermore, the coefficient of skin friction and the heat transfer rate increase for the first solution when the magnetic and the suction parameters are increased. Meanwhile, no change is noticed in the boundary layer separation for the various values of the Eckert number in the heat transfer rate.Article Citation Count: Hou, Enran...et.al. (2021). "Entropy generation and induced magnetic field in pseudoplastic nanofluid flow near a stagnant point", Scientific Reports, Vol.11, No.1.Entropy generation and induced magnetic field in pseudoplastic nanofluid flow near a stagnant point(2021) Hou, Enran; Hussain, Azad; Rehman, Aysha; Baleanu, Dumitru; Nadeem, Sohail; Matoog, R.T.; Khan, Ilyas; Sherif, El-Sayed M.; 56389In this present article the entropy generation, induced magnetic field, and mixed convection stagnant point flow of pseudoplastic nano liquid over an elastic surface is investigated. The Buongiorno model is employed in modeling. Through the use of the boundary layer idea, flow equations are transformed from compact to component form. The system of equations is solved numerically. The Induced magnetic spectrum falls near the boundary and grows further away as the reciprocal of the magnetic Prandtl number improves. The fluctuation of induced magnetic rises while expanding the values of mixed convection, thermophoresis, and magnetic parameters, whereas it declines for increment in the Brownian and stretching parameters. The velocity amplitude ascends and temperature descends for the rise in magnetic parameter. The mass transfer patterns degrade for the higher amount of buoyancy ratio while it boosts by the magnification of mixed convection and stretching parameters. Streamlines behavior is also taken into account against the different amounts of mixed convection and magnetic parameters. The pseudoplastic nanofluids are applicable in all electronic devices for increasing the heating or cooling rate in them. Further, pseudoplastic nanofluids are also applicable in reducing skin friction coefficient.Article Citation Count: Rafique, Khuram...et al. (2020). "Hydromagnetic Flow of Micropolar Nanofluid", Symmetry-Basel, Vol. 12, No. 2.Hydromagnetic Flow of Micropolar Nanofluid(2020) Rafique, Khuram; Anwar, Muhammad Imran; Misiran, Masnita; Khan, Ilyas; Baleanu, Dumitru; Nisar, Kottakkaran Sooppy; Sherif, El-Sayed M.; Seikh, Asiful H.; 56389Similar to other fluids (Newtonian and non-Newtonian), micropolar fluid also exhibits symmetric flow and exact symmetric solution similar to the Navier-Stokes equation; however, it is not always realizable. In this article, the Buongiorno mathematical model of hydromagnetic micropolar nanofluid is considered. A joint phenomenon of heat and mass transfer is studied in this work. This model indeed incorporates two important effects, namely, the Brownian motion and the thermophoretic. In addition, the effects of magnetohydrodynamic (MHD) and chemical reaction are considered. The fluid is taken over a slanted, stretching surface making an inclination with the vertical one. Suitable similarity transformations are applied to develop a nonlinear transformed model in terms of ODEs (ordinary differential equations). For the numerical simulations, an efficient, stable, and reliable scheme of Keller-box is applied to the transformed model. More exactly, the governing system of equations is written in the first order system and then arranged in the forms of a matrix system using the block-tridiagonal factorization. These numerical simulations are then arranged in graphs for various parameters of interest. The physical quantities including skin friction, Nusselt number, and Sherwood number along with different effects involved in the governing equations are also justified through graphs. The consequences reveal that concentration profile increases by increasing chemical reaction parameters. In addition, the Nusselt number and Sherwood number decreases by decreasing the inclination.Article Citation Count: Khan, Umair...et al. (2020). "MHD radiative blood flow embracing gold particles via a slippery sheet through an erratic heat sink/source", Mathematics, Vol. 8, No. 9.MHD radiative blood flow embracing gold particles via a slippery sheet through an erratic heat sink/source(2020) Khan, Umair; Shafiq, Anum; Zaib, Aurang; Sherif, El-Sayed M.; Baleanu, Dumitru; 56389Cancer remains one of the world's leading healthcare issues, and attempts continue not only to find new medicines but also to find better ways of distributing medications. It is harmful and lethal to most of its patients. The need to selectively deliver cytotoxic agents to cancer cells, to enhance protection and efficacy, has prompted the implementation of nanotechnology in medicine. The latest findings have found that gold nanomaterials can heal and conquer it because the material is studied such as gold (atomic number 79) which produces a large amount of heat and contribute to the therapy of malignant tumors. The purpose of the present study is to research the consequence of heat transport through blood flow (Casson model) that contains gold particles in a slippery shrinking/stretching curved surface. The mathematical modeling of Casson nanofluid containing gold nanomaterials towards the slippery curved shrinking/stretching surface is simplified by utilizing suitable transformation. Numerical dual solutions for the temperature and velocity fields are calculated by using bvp4c methodology in MATLAB. Impacts of related parameters are investigated in the temperature and velocity distribution. The results indicate that the suction parameter accelerates the velocity in the upper branch solution and decelerates it in the lower branch solution, while the temperature diminishes in both solutions. In addition, the Casson parameter shrinks the thickness of the velocity boundary-layer owing to rapid enhancement in the plastic dynamics' viscosity. Moreover, the nanoparticle volume fraction accelerates the viscosity of blood as well as the thermal conductivity. Thus, findings suggested that gold nanomaterials are useful for drug moving and delivery mechanisms since the velocity boundary is regulated by the volume fraction parameter. Gold nanomaterials also raise the temperature field, so that cancer cells can be destroyed. © 2020 by the authors.Article Citation Count: Khan, Umair;...et.al. (2023). "Stability Scrutinization of Agrawal Axisymmetric Flow of Nanofluid through a Permeable Moving Disk Due to Renewable Solar Radiation with Smoluchowski Temperature and Maxwell Velocity Slip Boundary Conditions", CMES - Computer Modeling in Engineering and Sciences, Vol.134, No.2, pp.1371-1392.Stability Scrutinization of Agrawal Axisymmetric Flow of Nanofluid through a Permeable Moving Disk Due to Renewable Solar Radiation with Smoluchowski Temperature and Maxwell Velocity Slip Boundary Conditions(2023) Khan, Umair; Zaib, Aurang; Ishak, Anuar; Waini, Iskandar; Sherif, El-Sayed M.; Baleanu, Dumitru; 56389The utilization of solar energy is essential to all living things since the beginning of time. In addition to being a constant source of energy, solar energy (SE) can also be used to generate heat and electricity. Recent technology enables to convert the solar energy into electricity by using thermal solar heat. Solar energy is perhaps the most easily accessible and plentiful source of sustainable energy. Copper-based nanofluid has been considered as a method to improve solar collector performance by absorbing incoming solar energy directly. The goal of this research is to explore theoretically the Agrawal axisymmetric flow induced by Cu-water nanofluid over a moving permeable disk caused by solar energy. Moreover, the impacts of Maxwell velocity and Smoluchowski temperature slip are incorporated to discuss the fine points of nanofluid flow and characteristics of heat transfer. The primary partial differential equations are transformed to similarity equations by employing similarity variables and then utilizing bvp4c to resolve the set of equations numerically. The current numerical approach can produce double solutions by providing suitable initial guesses. In addition, the results revealed that the impact of solar collector efficiency enhances significantly due to nanoparticle volume fraction. The suction parameter delays the boundary layer separation. Moreover, stability analysis is performed and is found that the upper solution is stable and physically trustworthy while the lower one is unstable.