Browsing by Author "Singh, J."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article An efficient computational approach for a fractional-order biological population model with carrying capacity(2020) Baleanu, Dumitru; Dubey, V. P.; Kumar, R.; Singh, J.; Kumar, D.; Baleanu, Dumitru; 56389In this article, we examine a fractional-order biological population model with carrying capacity. The blended homotopy techniques pertaining to the Sumudu transform are utilized to explore the solutions of a nonlinear fractional-order population model with carrying capacity. The fractional derivative of the Caputo type is utilized in the proposed investigation. The numerical computations indicate the sufficiency of the iterations for the improved estimations of the solutions of this fractional-order biological population model which exemplifies the potency and soundness of the utilized schemes. The analysis explored through the utilization of the projected methods reveals that both of the schemes are in a great agreement with each other. The variations of the prey and predator populations with respect to time and fractional order of the Caputo derivative are presented and graphically illustrated. (c) 2020 Elsevier Ltd. All rights reserved.Article Numerical computation of a fractional model of differential-difference equation(Asme, 2013) Baleanu, Dumitru; Singh, J.; Baleanu, DumitruIn the present article, we apply a numerical scheme, namely, homotopy analysis Sumudu transform algorithm, to derive the analytical and numerical solutions of a nonlinear fractional differential-difference problem occurring in nanohydrodynamics, heat conduction in nanoscale, and electronic current that flows through carbon nanotubes. The homotopy analysis Sumudu transform method (HASTM) is an inventive coupling of Sumudu transform algorithm and homotopy analysis technique that makes the calculation very easy. The fractional model is also handled with the aid of Adomian decomposition method (ADM). The numerical results derived with the help of HASTM and ADM are approximately same, so this scheme may be considered an alternative and well-organized technique for attaining analytical and numerical solutions of fractional model of discontinued problems. The analytical and numerical results derived by the application of the proposed technique reveal that the scheme is very effective, accurate, flexible, easy to apply, and computationally very appropriate for such type of fractional problems arising in physics, chemistry, biology, engineering, finance, etc.