Browsing by Author "Tan, Evren"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference Object Designing thermochemical processes for ti-alloys produced by additive manufacturing techniques(2019) Esen, Ziya; Doğu, Merve Nur; Bilgin, Güney Mert; Tan, Evren; Berkay Gümüş, Berkay; Dericioğlu, Arcan F.; 52373; 09.01. Ortak Dersler Bölümü; 09. Rektörlük; 01. Çankaya ÜniversitesiTi-6Al-4V alloys are extensively used in biomedical, aerospace and petro-chemical applications mainly due to their high specific strength, excellent corrosion resistance and high fatigue strength. In contrast to conventional techniques, additive manufacturing techniques make possible production of parts with complex geometries in one step by minimizing the usage of raw materials. However, post heat treatment processes need to be applied to reduce residual stresses created and to get uniform controllable microstructure so as to obtain desired mechanical properties. Conventional annealing heat treatments are effective in eliminating the residual stress and increasing the ductility. But, they usually degrade the strength and result in coarsening the microstructure. In this study, thermochemical process, called thermo-hydrogen process (THP), was applied to Ti-6Al-4V alloy parts produced by selective laser melting (SLM) and electron beam melting (EBM) with the aim of increasing ductility without degrading the alloy strength. Additively manufactured parts initially hydrogenated at 650oC for 1 h under H2+Ar gas mixture and then, dehyrogenated at 700oC for 18 h under high vacuum. As a result of alloying with hydrogen and dealloying turned martensitic microstructure in SLM parts into fine + lamellar phase mixture. On the other hand, microstructural refinement in EBM parts were limited since as-manufactured parts were already composed of fine lamellar microstructure. THP prevented grain growth and grain boundary α-phase formation in SLM parts. Ductility of the alloys increased by 110 %, while the strength decreased slightly only by 10 %. However, the effect of the THP on mechanical properties of EBM samples couldn’t be observed due to their high surface roughness which induced notch effect.Article Citation - WoS: 23Citation - Scopus: 24Microstructural and Texture Evolution During Thermo-Hydrogen Processing of Ti6al4v Alloys Produced by Electron Beam Melting(Elsevier Science inc, 2020) Esen, Ziya; Davut, Kemal; Tan, Evren; Gumus, Berkay; Dericioglu, Arcan F.; Dogu, Merve Nur; 52373; 09.01. Ortak Dersler Bölümü; 09. Rektörlük; 01. Çankaya ÜniversitesiThe present study was conducted to reveal the effects of building angles and post heat-treatments (2-step Thermo-Hydrogen Processing (THP) and conventional annealing treatment) on the density, microstructure and texture of Ti6Al4V alloy parts produced by Electron Beam Melting (EBM). The results showed that regardless of the building angle; the density, microstructure and crystallographic texture (defined with respect to building angle) of the as-produced samples were identical; having Widmanstatten a structure and columnar beta-grains which are parallel to building direction. The main texture component for the alpha phase was (10 (1) over bar0)//building direction, and for beta phase (001)//building or heat flow direction. The first step of THP, namely, the hydrogenation step, produced a needle-like microstructure and increased the local misorientations due to lattice distortion. On the other hand, after application of the second step of THP, dehydrogenation step, microstructure was refined, particularly alpha-grains that were larger than 10 mu m and located at grain boundaries. Moreover, THP randomized the crystallographic texture since it involves beta to alpha phase transformation, at which one beta-grain can produce 12 distinct alpha-variants. The grain boundary misorientation distributions also changed in accordance with the microstructural changes during the 2-step THP. On the other hand, annealing coarsened the grain boundary and Widmanstatten alpha phases; moreover, it changed the texture so that the basal planes (0001) rotated 30 degrees around the building direction.
