Browsing by Author "Uslan, Ibrahim"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article Citation - WoS: 9Citation - Scopus: 10Effect of use of cu-cr p/m electrodes on machining performance of electric discharge machining(Gazi Univ, Fac Engineering Architecture, 2015) Gulcan, Orhan; Çoğun, Can; Uslan, Ibrahim; Usta, Yusuf; Cogun, Can; 3113; 118190; 3837In this study, the effect of use of Cu-Cr powder metal (P/M) electrodes on EDM performance outputs, namely material removal rate (MRR), electrode wear rate (EWR), mean and maximum roughness of machined surface (R-a and R-z) and workpiece surface recast layer thickness, was investigated experimentally. The Cu-Cr P/M electrodes produced at different mixing ratios, compacting pressures and sintering temperatures were used to machine SAE 1040 steel. The analyses performed have shown that the electrode material is deposited on to the work surface as a layer and the powder mixing ratio, the compaction pressure and sintering temperature affect the EDM performance outputs.Article Citation - WoS: 28Citation - Scopus: 32Performance and surface alloying characteristics of Cu-Cr and Cu-Mo powder metal tool electrodes in electrical discharge machining(Taylor & Francis inc, 2016) Gulcan, Orhan; Çoğun, Can; Uslan, Ibrahim; Usta, Yusuf; Cogun, Can; 3113; 118190; 3837The main objective of this study is to investigate the effect of Cu-Cr and Cu-Mo powder metal (PM) tool electrodes on electrical discharge machining (EDM) performance outputs. The EDM performance measures used in the study are material removal rate (MRR), tool electrode wear rate (EWR), average workpiece surface roughness (R-a), machined workpiece surface hardness, abrasive wear resistance, corrosion resistance, and workpiece alloyed layer depth and composition. The EDM performance of Cu-Cr and Cu-Mo PM electrodes produced at three different mixing ratios (15, 25, and 35wt% Cr or Mo), compacting pressures (P-c = 600, 700, and 800MPa), and sintering temperatures (T-s = 800, 850, and 900 degrees C) are compared with those machined with electrolytic Cu and Cu PM electrodes when machining SAE 1040 steel workpiece. Analyses revealed that tool materials were deposited as a layer over the work surface yielding high surface hardness, strong abrasion, and corrosion resistance. Moreover, the mixing ratio, P-c, and T-s affect the MRR, EWR, and R-a values.Article Citation - WoS: 10Citation - Scopus: 9The effect of powder mixed and heated dielectric on drilling performance of electric discharge machining (EDM)(Gazi Univ, Fac Engineering Architecture, 2016) Erdem, Oguz; Çoğun, Can; Cogun, Can; Urtekin, Levent; Ozerkan, H. Bekir; Uslan, Ibrahim; 3837In this study, heated silicon oil with added carbon and starch powders was used as dielectric liquid, instead of common hydro-carbon based dielectrics, to obtain better hole surface quality with rotating brass tube electrode in electric discharge machining (EDM). The electro-rheometer tests were conducted to find out the suitable temperature and powder concentration values of the electro-rheological (ER) dielectric under the electric field. Higher workpiece material removal rates (MRR) was obtained in carbon powder added dielectrics than the starch powder added ones for rotating and non-rotating electrodes. The optical microscope observations of the machined hole surfaces indicated that the carbon powder added dielectrics reduced the diameter and depth of the discharge craters, thereby resulting in uniformly distributed and round top peaked surface topography. The starch powder addition to the carbon mixed dielectric further improved the surface quality for both rotating and non-rotating electrodes cases at 30 degrees C and 75 degrees C dielectric temperatures.Article Citation - WoS: 6Citation - Scopus: 6Thermo-fluid multi-physics modeling and experimental verification of volumetric workpiece material removal by a discharge pulse in electric discharge machining process(Iop Publishing Ltd, 2020) Erdem, Oguz; Çoğun, Can; Cogun, Can; Uslan, Ibrahim; Erbas, Murat; 3837The volume of material removed from the workpiece by a pulse (V-v) in the electric discharge machining was quantitatively determined using a multi-physics simulation model in ANSYS CFX software. Electrical heating is used in the model to simulate the plasma channel formation by defining the boundary and time-controlled current density initial conditions. Time-dependent physical properties at plasma temperature were used to reflect the actual processing environment. The heat was transferred from the plasma channel to the workpiece by electrical heating from the electrode, and V(v)was calculated by means of the amount of heat transfer. The calculated V(v)values for AISI4140, Ti6Al4V and Inconel 718 workpieces were lower than the experimental results and the difference was observed to change between 38.3% and 46.9%.