Browsing by Author "Yilmaz, Okan Deniz"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 7Citation - Scopus: 10Combined Use of Ultrasonic-Assisted Drilling and Minimum Quantity Lubrication for Drilling of Niti Shape Memory Alloy(Taylor & Francis inc, 2023) Namlu, Ramazan Hakki; Lotfi, Bahram; Kilic, S. Engin; Yilmaz, Okan Deniz; Akar, Samet; 315516; 06.06. Makine Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiThe drilling of shape-memory alloys based on nickel-titanium (Nitinol) is challenging due to their unique properties, such as high strength, high hardness and strong work hardening, which results in excessive tool wear and damage to the material. In this study, an attempt has been made to characterize the drillability of Nitinol by investigating the process/cooling interaction. Four different combinations of process/cooling have been studied as conventional drilling with flood cooling (CD-Wet) and with minimum quantity lubrication (CD-MQL), ultrasonic-assisted drilling with flood cooling (UAD-Wet) and with MQL (UAD-MQL). The drill bit wear, drilling forces, chip morphology and drilled hole quality are used as the performance measures. The results show that UAD conditions result in lower feed forces than CD conditions, with a 31.2% reduction in wet and a 15.3% reduction in MQL on average. The lowest feed forces are observed in UAD-Wet conditions due to better coolant penetration in the cutting zone. The UAD-Wet yielded the lowest tool wear, while CD-MQL exhibited the most severe. UAD demonstrated a & SIM;50% lower tool wear in the wet condition than CD and a 38.7% in the MQL condition. UAD is shown to outperform the CD process in terms of drilled-hole accuracy.Article Citation - WoS: 11Citation - Scopus: 10Effect of Constitutive Material Model on the Finite Element Simulation of Shear Localization Onset(Elsevier, 2020) Yilmaz, Okan Deniz; Oliaei, Samad Nadimi Bavil; 01. Çankaya ÜniversitesiOne of the most challenging problems in the field of machining is to determine the onset of shear localization. The consequences of the emergence of shear localized chips are fluctuations in the machining forces, tool wear, deterioration of the surface quality and out-of-tolerance machined components. Several constitutive material models are developed for the simulation of shear localization during machining, especially for Ti6Al4V. However, the accuracy and capability of the proposed models for the prediction of shear localization onset have not been investigated yet. In this study, the effect of different constitutive material models in the prediction of shear localization onset has been investigated. Different material models are studied including the Johnson-Cook (J-C) material model with Cockcroft-Latham damage model, J-C material model with a J-C damage model, models based on modified J-C material models (MJ-C) with strain softening terms, and material model with power-law type strain hardening and strain rate sensitivity, with polynomial thermal softening and polynomial temperature-dependent damage. The results of the finite element models are verified using orthogonal cutting experiments in terms of chip morphology and machining forces. Metallography techniques are used along with SEM observations to elucidate the distinction between continuous and shear localized chips. The results of this study indicate that three models are capable of predicting shear localization onset. However, when compared to the experiments, where a critical cutting speed of 2.8 m/min is obtained for shear localization onset, the results revealed that the model proposed by Sima and Ozel (2016) which is a model based on MJ-C model with temperature-dependent overarching modifier and temperature-dependent material model parameters is more accurate for the prediction of shear localization onset during machining Ti6Al4V. This model is shown to reveal a good prediction for the machining forces as well.
