Browsing by Author "Zaib, A."
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Article Citation Count: Khan, Umair...et al. (2020). "Enhanced Heat Transfer in Moderately Ionized Liquid Due to Hybrid MoS2/SiO2 Nanofluids Exposed by Nonlinear Radiation: Stability Analysis", Crystals, Vol. 10, No. 2.Enhanced Heat Transfer in Moderately Ionized Liquid Due to Hybrid MoS2/SiO2 Nanofluids Exposed by Nonlinear Radiation: Stability Analysis(2020) Khan, Umair; Zaib, A.; Khan, Ilyas; Baleanu, Dumitru; Nisar, Kottakkaran Sooppy; 56389This study considers ethylene-glycol as a moderate ionized regular liquid whose rheological behavior can be analyzed through the relations of the Carreau stress-strain tensor. Hybrid nanoliquids are potent liquids that give better performance for heat transfer and the properties of thermo physical than regular heat transfer liquids (water, ethylene glycol, and oil) and nanoliquids by single nanomaterials. Here, a type of hybrid nanoliquid involving silicon oxide (SiO2) and Molybdenum disulfide (MoS2) nanoparticles with ethylene glycol as a base liquid are considered. In addition, the impact of nonlinear radiation along with Lorentz force is invoked. Similarity variables are utilized to acquire the numerical findings and their solutions for transmuting ordinary differential equations (ODEs). Using bvp4c from MATLAB, we can obtain these quantitative and numerical results of the converted nonlinear equations. The impacts of the pertinent constraints on the temperature distribution, velocity, Nusselt number, and skin friction are estimated. The outcomes indicate that the double-edged methods for the results originate from the precise values of the permeable parameters. Further, the critical values (S-c = 1.9699, 2.0700 and 2.2370) are enhanced due to the influence of the local Weissenberg number. This implies that the increasing value of the local Weissenberg number accelerate the boundary layer separation. Furthermore, a stability investigation is performed and confirms that the first solution is a physically reliable solution.Article Citation Count: Khan, Umair...et al. (2020). "Exploration of dual solutions for an enhanced cross liquid flow past a moving wedge under the significant impacts of activation energy and chemical reaction", Heliyon, Vol. 6, No. 7.Exploration of dual solutions for an enhanced cross liquid flow past a moving wedge under the significant impacts of activation energy and chemical reaction(2020) Khan, Umair; Zaib, A.; Baleanu, Dumitru; Sheikholeslami, M.; Wakif, Abderrahim; 56389The mathematical modeling and numerical simulation are conferred to offer the novel perception of binary chemical reaction with an activation energy aspect on magneto flow comprising Cross liquid inspired by a moving wedge. The influences of Soret and Dufour are also presented. The similarity procedure is utilized to modify the leading PDEs into a non-linear system of ODEs and then analyzed through a significant technique namely bvp4c based on the collocation method. The impacts of varying distinct parameters under the temperature and the velocity distribution are explored and discussed with the support of the graphs. The outcomes indicate that the multiple results are attained for a specific amount of shrinking/stretching constraint. Furthermore, the Weissenberg number reduces the skin factor and speed up the heat and mass transport rate in the lower and upper branch solutions. Also, an assessment of current results with earlier published literature is made in the limiting case.Article Citation Count: Khan, Umair...et al. (2020). "Hybrid nanofluid on mixed convective radiative flow from an irregular variably thick moving surface with convex and concave effects", Case Studies in Thermal Engineering, Vol. 21.Hybrid nanofluid on mixed convective radiative flow from an irregular variably thick moving surface with convex and concave effects(2020) Khan, Umair; Shafiq, Anum; Zaib, A.; Baleanu, Dumitru; 56389The analysis explores the significance of thermal radiation on mixed convective boundary layer flow of a hybrid (SiO2-MoS2/H2O) nanofluid. The permeability of the stretched/shrinking surface is allowing the wall fluid suction, whereas radiation phenomenon is also incorporated in the presence of thermal convection. The combination of SiO2 nanoparticles and MoS2/H2O nanofluid are being modeled using the analytical nanofluid hybrid model in the present work. The hybrid nanofluid governing equations are transformed utilizing the similarity transformation technique. The transformed boundary value problem, then solved by bvp4c technique in MATLAB software. For specified values of various parameters the numerical results are obtained. The findings indicate dual solutions, up to some amount of stretching/shrinking parameter. The suction parameter decelerates the friction factor and accelerates the heat transfer rate. Also, the tem-perature augments due to the radiation and nanoparticles volume fraction in both solutions, whereas the velocity declines due to nanoparticles volume fraction.Article Citation Count: Khan, Umair...et al. (2020). "Impact of magnetic field on boundary-layer flow of Sisko liquid comprising nanomaterials migration through radially shrinking/stretching surface with zero mass flux", Journal of Materials Research and Technology-JMR&T, Vol. 9, No. 3, pp. 3699-3709.Impact of magnetic field on boundary-layer flow of Sisko liquid comprising nanomaterials migration through radially shrinking/stretching surface with zero mass flux(2020) Khan, Umair; Zaib, A.; Shah, Zahir; Baleanu, Dumitru; Sherif, El-Sayed M; 56389In the recent past, many claims on thermo-physical characteristics of nanofluids in different flow regimes, especially laminar flow regime have been comprised in literature. Keeping these in mind, the focus of the current review is to study the physical aspects of laminar two-dimensional flow of magnetic-Sisko fluid where nanoparticles are present. In addition, the mass and the heat transfer features through convective boundary and zero mass flux conditions have been examined. This paper is probably the first contribution concerning the multiple solutions for axi-symmetric flow of Sisko nanofluids owing to a radially shrinking surface. The physical situation is modelled with the aid of mass, momentum and energy conservation equations. This investigation employs the non-dimensional variables to transmute the conserving PDE's to a system of ODE's. In the numerical study, a collocated numerical technique, namely, bvp4c based on finite difference technique is utilized to obtain the results of the aforementioned problem. This scheme allows us to acquire the multiple solutions (lower and upper) for various specific values of shrinking and suction constraint. The outcomes from this review exhibit that the suction parameter accelerates the local skin friction in the phenomenon of the first solution while a repeal trend is watched for the second solution. It is further visualized that the presence of a high magnetic field shrinks the liquid velocity. In addition, the Sisko constraint decelerates the skin friction and the Nusselt number in the first solution and accelerated in the second solution. Finally, the results of a current study established a superb correlation with existing data for selected parameter values.Article Citation Count: Khan, Umair...et al. (2020). "Numerical exploration of MHD falkner-skan-sutterby nanofluid flow by utilizing an advanced non-homogeneous two-phase nanofluid model and non-fourier heat-flux theory", Alexandria Engineering Journal, Vol. 59, No. 6, pp. 4851-4864.Numerical exploration of MHD falkner-skan-sutterby nanofluid flow by utilizing an advanced non-homogeneous two-phase nanofluid model and non-fourier heat-flux theory(2020) Khan, Umair; Shafiq, Anum; Zaib, A.; Wakif, Abderrahim; Baleanu, Dumitru; 56389In this study, the feature of stagnant Sutterby nanofluid towards a wedge surface is analyzed under the impact of a variable external magnetic field. Instead of the traditional Fourier law, the realistic Cattaneo-Christov principle is incorporated in the energy equation to scrutinize the heat flow pattern by utilizing the non-homogeneous two-phase nanofluid model. The constitutive flow rules are transfigured into a nonlinear differential system via feasible mathematical alterations. Methodologically, the bvp4c numerical procedure is employed properly to derive accurate numerical solutions for the present boundary flow problem. By varying the values of the involved parameters of the governing equations, the behaviors of temperature, velocity, and concentration profiles are described graphically and interpreted thoroughly. In this attempt, the major finding is that the magnetic field accelerates the motion and declines the temperature and concentration fields in the performance of suction and injection. Moreover, the nanofluid parameters upsurge the heat transfer mechanism and decline the mass transport and the effect of drag forces in both situations of wall-through flow (i.e., suction and injection effects). Furthermore, the nanofluid concentration profile decays due to the strengthening in the thermophoresis phenomenon. As a useful application, the magnetic function trend along with the thermophoresis diffusion on the nanofluid flow field may be exerted broadly in the field of aerosol technology. © 2020 Faculty of Engineering, Alexandria UniversityArticle Citation Count: Nisar, Kottakkaran Sooppy...et al. (2020). "Numerical Simulation of Mixed Convection Squeezing Flow of a Hybrid Nanofluid Containing Magnetized Ferroparticles in 50%:50% of Ethylene Glycol–Water Mixture Base Fluids Between Two Disks With the Presence of a Non-linear Thermal Radiation Heat Flux", Frontiers in Chemistry, Vol. 8.Numerical Simulation of Mixed Convection Squeezing Flow of a Hybrid Nanofluid Containing Magnetized Ferroparticles in 50%:50% of Ethylene Glycol–Water Mixture Base Fluids Between Two Disks With the Presence of a Non-linear Thermal Radiation Heat Flux(2020) Nisar, Kottakkaran Sooppy; Khan, Umair; Zaib, A.; Khan, Ilyas; Baleanu, Dumitru; 56389Ferroliquids are an example of a colloidal suspension of magnetic nanomaterials and regular liquids. These fluids have numerous applications in medical science such as cell separation, targeting of drugs, magnetic resonance imaging, etc. The hybrid nanofluid is composed by scattering the magnetic nanomaterial of more than one type nanoparticles suspended into the base fluid. It has different scientific applications such as heat dissipation, dynamic sealing, damping, etc. Owing to the vast ferrofluid applications, the time-dependent squeezed flow of hybrid ferroliquids under the impact of non-linear radiation and mixed convection within two disks was explored for the first time in this analysis. Here, the cobalt and magnetite ferrofluids are considered and scattered in a 50%:50% mixture of water–EG (ethylene glycol). The similarity technique is used to reduce the leading PDEs into coupled non-linear ODEs. The transmuted equations together with recommended boundary restrictions are numerically solved via Matlab solver bvp4c. The opposing and assisting flows are considered. The impacts of an emerging parameter on fluid velocity and temperature field of hybrid ferroliquids are examined through the different graphical aids. The results showed that the opposite trend is scrutinized due to the magnetic influence on the temperature and velocity in the case of assisting and opposing flows. The velocity augments due to the volume fraction of nanoparticles in the assisting flow and declines in the opposing flow, while the opposite direction is noticed in the temperature field. © Copyright © 2020 Nisar, Khan, Zaib, Khan and Baleanu.Article Citation Count: Nisar, Kottakkaran Sooppy;...et.al. (2020). "Numerical Simulation of Mixed Convection Squeezing Flow of a Hybrid Nanofluid Containing Magnetized Ferroparticles in 50%:50% of Ethylene Glycol–Water Mixture Base Fluids Between Two Disks With the Presence of a Non-linear Thermal Radiation Heat Flux", Frontiers in Chemistry, Vol.8.Numerical Simulation of Mixed Convection Squeezing Flow of a Hybrid Nanofluid Containing Magnetized Ferroparticles in 50%:50% of Ethylene Glycol–Water Mixture Base Fluids Between Two Disks With the Presence of a Non-linear Thermal Radiation Heat Flux(2020) Nisar, Kottakkaran Sooppy; Khan, Umair; Zaib, A.; Khan, Ilyas; Baleanu, Dumitru; 56389Ferroliquids are an example of a colloidal suspension of magnetic nanomaterials and regular liquids. These fluids have numerous applications in medical science such as cell separation, targeting of drugs, magnetic resonance imaging, etc. The hybrid nanofluid is composed by scattering the magnetic nanomaterial of more than one type nanoparticles suspended into the base fluid. It has different scientific applications such as heat dissipation, dynamic sealing, damping, etc. Owing to the vast ferrofluid applications, the time-dependent squeezed flow of hybrid ferroliquids under the impact of non-linear radiation and mixed convection within two disks was explored for the first time in this analysis. Here, the cobalt and magnetite ferrofluids are considered and scattered in a 50%:50% mixture of water–EG (ethylene glycol). The similarity technique is used to reduce the leading PDEs into coupled non-linear ODEs. The transmuted equations together with recommended boundary restrictions are numerically solved via Matlab solver bvp4c. The opposing and assisting flows are considered. The impacts of an emerging parameter on fluid velocity and temperature field of hybrid ferroliquids are examined through the different graphical aids. The results showed that the opposite trend is scrutinized due to the magnetic influence on the temperature and velocity in the case of assisting and opposing flows. The velocity augments due to the volume fraction of nanoparticles in the assisting flow and declines in the opposing flow, while the opposite direction is noticed in the temperature field.