Browsing by Author "Zaky, M. A."
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Article A Computationally Efficient Method For a Class of Fractional Variational and Optimal Control Problems Using Fractional Gegenbauer Functions(Editura Academiei Romane, 2018) Baleanu, Dumitru; Doha, Eid H.; Ezz-Eldien, Samer S.; Abdelkawy, M. A.; Hafez, R. M.; Amin, A. Z. M.; Baleanu, Dumitru; Zaky, M. A.; 56389; MatematikThis paper is devoted to investigate, from the numerical point of view, fractional-order Gegenbauer functions to solve fractional variational problems and fractional optimal control problems. We first introduce an orthonormal system of fractional-order Gegenbauer functions. Then, a formulation for the fractional-order Gegenbauer operational matrix of fractional integration is constructed. An error upper bound for the operational matrix of the fractional integration is also given. The properties of the fractional-order Gegenbauer functions are utilized to reduce the given optimization problems to systems of algebraic equations. Some numerical examples are included to demonstrate the efficiency and the accuracy of the proposed approach.Article Citation - WoS: 29Citation - Scopus: 31A novel spectral approximation for the two-dimensional fractional sub-diffusion problems(Editura Acad Romane, 2015) Bhrawy, A. H.; Baleanu, Dumitru; Zaky, M. A.; Baleanu, D.; Abdelkawy, M. A.; MatematikThis paper reports a new numerical method that enables easy and convenient discretization of a two-dimensional sub-diffusion equation with fractional derivatives of any order. The suggested method is based on Jacobi tau spectral procedure together with the Jacobi operational matrix for fractional derivatives, described in the Caputo sense. Such approach has the advantage of reducing the problem to the solution of a system of algebraic equations, which may then be solved by any standard numerical technique. The validity and effectiveness of the method are demonstrated by solving two numerical examples, which are presented in the form of tables and graphs to make more easier comparisons with the exact solutions and the results obtained by other methods.Article Citation - WoS: 10Citation - Scopus: 10Composite Bernoulli-Laguerre collocation method for a class of hyperbolic telegraph-type equations(Editura Acad Romane, 2017) Doha, E. H.; Hafez, R. M.; Abdelkawy, M. A.; Ezz-Eldien, S. S.; Taha, T. M.; Zaky, M. A.; Baleanu, D.; 56389In this work, we introduce an efficient Bernoulli-Laguerre collocation method for solving a class of hyperbolic telegraph-type equations in one dimension. Bernoulli and Laguerre polynomials and their properties are utilized to reduce the aforementioned problems to systems of algebraic equations. The proposed collocation method, both in spatial and temporal discretizations, is successfully developed to handle the two-dimensional case. In order to highlight the effectiveness of our approachs, several numerical examples are given. The approximation techniques and results developed in this paper are appropriate for many other problems on multiple-dimensional domains, which are not of standard types.Article Citation - WoS: 21Citation - Scopus: 21A Computationally Efficient Method for A Class of Fractional Variational and Optimal Control Problems Using Fractional Gegenbauer Functions(Editura Acad Romane, 2018) El-Kalaawy, A. A.; Doha, E. H.; Ezz-Eldien, S. S.; Abdelkawy, M. A.; Hafez, R. M.; Amin, A. Z. M.; Zaky, M. A.This paper is devoted to investigate, from the numerical point of view, fractional-order Gegenbauer functions to solve fractional variational problems and fractional optimal control problems. We first introduce an orthonormal system of fractional-order Gegenbauer functions. Then, a formulation for the fractional-order Gegenbauer operational matrix of fractional integration is constructed. An error upper bound for the operational matrix of the fractional integration is also given. The properties of the fractional-order Gegenbauer functions are utilized to reduce the given optimization problems to systems of algebraic equations. Some numerical examples are included to demonstrate the efficiency and the accuracy of the proposed approach.Article Citation - WoS: 85Citation - Scopus: 122New Numerical Approximations for Space-Time Fractional Burgers' Equations Via a Legendre Spectral-Collocation Method(Editura Acad Romane, 2015) Bhrawy, A. H.; Zaky, M. A.; Baleanu, D.Burgers' equation is a fundamental partial differential equation in fluid mechanics. This paper reports a new space-time spectral algorithm for obtaining an approximate solution for the space-time fractional Burgers' equation (FBE) based on spectral shifted Legendre collocation (SLC) method in combination with the shifted Legendre operational matrix of fractional derivatives. The fractional derivatives are described in the Caputo sense. We propose a spectral shifted Legendre collocation method in both temporal and spatial discretizations for the space-time FBE. The main characteristic behind this approach is that it reduces such problem to that of solving a system of nonlinear algebraic equations that can then be solved using Newton's iterative method. Numerical results with comparisons are given to confirm the reliability of the proposed method for FBE.Article Citation - WoS: 117Citation - Scopus: 124Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model(Editura Acad Romane, 2015) Abdelkawy, M. A.; Baleanu, Dumitru; Zaky, M. A.; Bhrawy, A. H.; Baleanu, D.; 56389; MatematikThis paper reports a novel numerical technique for solving the time variable fractional order mobile-immobile advection-dispersion (TVFO-MIAD) model with the Coimbra variable time fractional derivative, which is preferable for modeling dynamical systems. The main advantage of the proposed method is that two different collocation schemes are investigated for both temporal and spatial discretizations of the TVFO-MIAD model. The problem with its boundary and initial conditions is then reduced to a system of algebraic equations that is far easier to be solved. Numerical results are consistent with the theoretical analysis and indicate the high accuracy and effectiveness of this algorithm.Article Citation - WoS: 19Citation - Scopus: 27Operational matrix approach for solving the variable-order nonlinear Galilei invariant advection-diffusion equation(Springer international Publishing Ag, 2018) Zaky, M. A.; Baleanu, Dumitru; Baleanu, D.; Alzaidy, J. F.; Hashemizadeh, E.; 56389; MatematikIn this paper, we investigate numerical solution of the variable-order fractional Galilei advection-diffusion equation with a nonlinear source term. The suggested method is based on the shifted Legendre collocation procedure and a matrix form representation of variable-order Caputo fractional derivative. The main advantage of the proposed method is investigating a global approximation for the spatial and temporal discretizations. This method reduces the problem to a system of algebraic equations, which is easier to solve. The validity and effectiveness of the method are illustrated by an easy-to-follow example.