Yazılım Mühendisliği Bölümü
Permanent URI for this communityhttps://hdl.handle.net/20.500.12416/2146
Browse
Browsing Yazılım Mühendisliği Bölümü by Language "tr"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Conference Object Bilgi Biliminin Mühendislik Gereksinimi ve Bilgi Mühendisliği(2009) Medeni, İhsan Tolga; Aktaş, A. Ziya; Tolun, Mehmet R.; 1863; Bilgisayar Mühendisliği; Yazılım MühendisliğiYirminci yüzyılın ikinci yarısında bilgisayar, bilgi ve iletişim teknolojilerindeki gelişmeler bilgiye dayalı yeni bilim ve mühendislik disiplinleri oluşturma ihtiyacını doğurmuştur. Bu ihtiyaç nedeniyle doğan yeni bilim ve mühendislik disiplinlerinin gelişiminin aslında (veri, enformasyon ve bilgi ) üçlüsüne yönelik oluşumlar olduğu gözlemlenmektedir.Bu makalede bilgi sözcüğü bu üçlü için genel bir ad olarak kullanılacaktır. Bilgi disiplini bir taraftan, bu üçlü arasındaki bağların örgütler ve bireyler açısından ortaya koyulmasını amaçlar; açık ve örtük bilginin birbirine dönüşümünü sağlamaya çalışırken, diğer taraftan da ortaya çıkan yeni dallar ve var olan dalların bilgi temelli ilişkisini kurmaya yönelik çalışmalar yapmaktadır. Bu üçlünün ve bilgi disiplininin bilim / mühendislik, işletme / yönetim disiplinleriyle olan ilişkisi ve oluşturulacak bir bilgi mühendisliği lisans programının bu kavramlarla olabilecek ilgisi bu bildirinin konusudur.Conference Object Citation - WoS: 0Detection of Stylometric Writeprint from the Turkish Texts(Ieee, 2020) Canbay, Pelin; Sezer, Ebru Akcapinar; Sever, Hayri; 11916; Bilgisayar MühendisliğiAuthorship attribution studies aim to extract information about the author by analyzing the data in the text form. With the increase of anonymous authors in digital environments, the need for these works is increasing day by day. Although there exists lots of studies focuse on stylometric writeprint detection in different languages using different attributes, there is no standard feature set and detection algorithm to be evaluated in these studies. Giving priority to Turkish texts, in this study, which features are more distinctive for determining stylistic writeprint of text, and which methods will contribute to increase the success to be achieved are shown with experimental studies.Article Otomatik Konuşma Tanıma Sistemlerinde Kullanılan Gerçek Metin Verisinde Biçimbilimsel-Sözdizimsel Hataların Tespiti ve Düzeltmesi(2019) Polat, Hüseyin; Sever, Hayri; Oyucu, Saadin; Tekbaş, Şükran; 11916; Bilgisayar MühendisliğiTürkçe Otomatik Konuşma Tanıma (ASR: Automatic Speech Recognition) sistemlerinde kullanılan akustik model gürbüz bir dil modeli ile desteklenmediği durumlarda kelime hata oranı yüksek çıkmaktadır. İyi dizayn edilmiş bir dil modeli ile akustik modelin birlikte ASR’de kullanılması kelime hata oranını düşürmektedir. ASR için gerekli dil modelinin eğitiminde düz metin verisi kullanılmaktadır. Kullanılan metin verisinin doğruluğu ASR modellerinin eğitimi için oldukça önemlidir. Bu çalışmada, doğal dil işlemeye dayalı bir yöntem kullanılarak Türkçe ASR sisteminin eğitilmesinde kullanılan metin verisi içerisindeki yazım hatalarının tespiti ve düzeltilmesi gerçekleştirilmiştir. Öncelikle metin verisi içerisinde dil bilgisel olarak yanlış yazılmış olan kelimeler bulunmuştur. Bir kelimedeki karakter eksikliği, karakter fazlalığı, karakterlerin yer değiştirmesi veya karakteri yanlış yazılmış olan kelimeler hatalı olarak kabul edilmiştir. Metin verisi içerisinde hatalı olarak kabul edilen kelimeler morfolojik analiz ile tespit edilmiştir. Yanlış kelimelerin yerine atanacak olan kelimeler belirlenmiştir. Yanlış yazılmış olan kelimeler doğru kelimeler ile değiştirilmiştir. Gerçekleştirilen çalışma hatalı kelimeleri tespit etme ve doğru kelimeler ile yer değiştirme işleminde %93 oranında başarı göstermiştir.Article Otomatik Konuşma Tanımaya Genel Bakış, Yaklaşımlar ve Zorluklar: Türkçe Konuşma Tanımanın Gelecekteki Yolu(2019) Oyucu, Saadin; Polat, Huseyin; Sever, Hayri; 11916; Bilgisayar Mühendisliğiİnsanlar arasındaki en önemli iletişim yöntemi olan konuşmanın, bilgisayarlar tarafından tanınması önemli bir çalışma alanıdır. Bu araştırma alanında farklı diller temel alınarak birçok çalışma gerçekleştirilmiştir. Literatürdeki çalışmalar konuşma tanıma teknolojilerinin başarımının artmasında önemli rol oynamıştır. Bu çalışmada konuşma tanıma ile ilgili bir literatür taraması yapılmış ve detaylı olarak sunulmuştur. Ayrıca farklı dillerde bu araştırma alanında kaydedilen ilerlemeler tartışılmıştır. Konuşma tanıma sistemlerinde kullanılan veri setleri, özellik çıkarma yaklaşımları, konuşma tanıma yöntemleri ve performans değerlendirme ölçütleri incelenerek konuşma tanımanın gelişimi ve bu alandaki zorluklara odaklanılmıştır. Konuşma tanıma alanında son zamanlarda yapılan çalışmaların olumsuz koşullara (çevre gürültüsü, konuşmacıda ve dilde değişkenlik) karşı çok daha güçlü yöntemler geliştirmeye odaklandığı izlenmiştir. Bu nedenle araştırma alanı olarak genişleyen olumsuz koşullardaki konuşma tanıma ile ilgili yakın geçmişteki gelişmelere yönelik genel bir bakış açısı sunulmuştur. Böylelikle olumsuz koşullar altında gerçekleştirilen konuşma tanımadaki tıkanıklık ve zorlukları aşabilmek için kullanılabilecek yöntemleri seçmede yardımcı olunması amaçlanmıştır. Ayrıca Türkçe konuşma tanımada kullanılan ve iyi bilinen yöntemler karşılaştırılmıştır. Türkçe konuşma tanımanın zorluğu ve bu zorlukların üstesinden gelebilmek için kullanılabilecek uygun yöntemler irdelenmiştir. Buna bağlı olarak Türkçe konuşma tanımanın gelecekteki rotasına ilişkin bir değerlendirme ortaya konulmuştur.Article Sessizliğin Kaldırılması ve Konuşmanın Parçalara Ayrılması İşleminin Türkçe Otomatik Konuşma Tanıma Üzerindeki Etkisi(2020) Sever, Hayri; Polat, Huseyin; Oyucu, Saadin; 11916; Bilgisayar MühendisliğiOtomatik Konuşma Tanıma sistemleri temel olarak akustik bilgiden faydalanılarak geliştirilmektedir. Akustikbilgiden fonem bilgisinin elde edilmesi için eşleştirilmiş konuşma ve metin verileri kullanılmaktadır. Bu verilerile eğitilen akustik modeller gerçek hayattaki bütün akustik bilgiyi modelleyememektedir. Bu nedenle belirli önişlemlerin yapılması ve otomatik konuşma tanıma sistemlerinin başarımını düşürecek akustik bilgilerin ortadankaldırılması gerekmektedir. Bu çalışmada konuşma içerisinde geçen sessizliklerin kaldırılması için bir yöntemönerilmiştir. Önerilen yöntemin amacı sessizlik bilgisinin ortadan kaldırılması ve akustik bilgide uzunbağımlılıklar sağlayan konuşmaların parçalara ayrılmasıdır. Geliştirilen yöntemin sonunda elde edilen sessizlikiçermeyen ve parçalara ayrılan konuşma bilgisi bir Türkçe Otomatik Konuşma Tanıma sistemine girdi olarakverilmiştir. Otomatik Konuşma Tanıma sisteminin çıkışında sisteme giriş olarak verilen konuşma parçalarınakarşılık gelen metinler birleştirilerek sunulmuştur. Gerçekleştirilen deneylerde sessizliğin kaldırılması vekonuşmanın parçalara ayrılması işleminin Otomatik Konuşma Tanıma sistemlerinin başarımını artırdığıgörülmüştür.Conference Object Sınıflandırmada Küçük ve Dengesiz Veri Kümesi Problemi(2019) Par, Öznur Esra; Akçapınar Sezer, Ebru; Sever, Hayri; 11916; Bilgisayar MühendisliğiVerilerinin sınıflandırılması, veri kümesinin küçük ve dengesiz olması durumunda zorlaşmakta ve sınıflama performansını direkt etkilemektedir. Veri setinin küçük olması ve/veya sınıflar arasında dengesizlik olması veri madenciliğinde büyük bir sorun haline gelmiştir. Sınıflama algoritmaları, veri setlerinin yeterli büyüklüğe sahip, dengeli olduğu varsayımı üzerine geliştirilmiştir. Bu algoritmaların çoğu, azınlık sınıfındaki örnekleri göz ardı ederken veya yanlış sınıflandırırken, çoğunluk sınıfa odaklanır. Medikal veri madenciliğinde bazı kısıtlardan dolayı küçük ve dengesiz veri seti problemi ile sıklıkla karşılaşılmaktadır. Çalışma kapsamında erişime açık hepatit veri seti, küçük veri setlerine bölünmüş, oluşturulan her bir veri seti uzaklık tabanlı yöntemlerle çoğaltılmıştır. Çoğaltılan veri setleri dört farklı makine öğrenmesi algoritması (Yapay Sinir Ağları, Destek Vektör Makineleri, Naive Bayes ve Karar Ağacı) kullanılarak sınıflandırılmış, elde edilen sınıflama sonuçları karşılaştırılmıştır.Conference Object Türk Beyin Cerrahlarının Teknolojiye Ulaşım İmkanları(2018) Çağıltay, Nergiz; 113411; Yazılım MühendisliğiConference Object Yeşil BHT Bilgi ve Haberleşme Teknolojileri Akademisyen ve Uygulayıcılar Açısından Bir İnceleme(2011) Akba, Fırat; Medeni, İhsan Tolga; Medeni, Tunç Durmuş; Tolun, Mehmet Reşit; Öztürk, Mehmet; 181215; Bilgisayar Mühendisliği; Yazılım Mühendisliği