Fizik Bilim Dalı
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/1819
Browse
Browsing Fizik Bilim Dalı by Scopus Q "Q1"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Article Calculation of the raman frequency, damping constant (Linewidth) and the relaxation time near the tetragonal-cubic transition in PbTiO3(Elsevier Gmbh, 2017) Kiraci, A.; Kiracı, Ali; Yurtseven, H.; 42475Frequencies, damping constants and the relaxation times of some Raman modes including the two soft modes are calculated as a function of pressure near the tetragonal-cubic transition in PbTiO3. Calculation of the Raman frequencies is performed using the observed volume data from the literature by means of the mode Gruneisen parameter at various pressures. Pressure dependence of the damping constant and the relaxation time is predicted using the pseudospin-phonon coupled model and the energy fluctuation model by considering that the Raman frequency can be taken as the order parameter (spontaneous polarization) for the tetragonal-cubic transition in PbTiO3. Expressions from both models for the damping constants are fitted to the observed Raman linewidths of the two soft modes and for the other Raman modes the damping constant and the relaxation time are predicted close to the transition. We find that damping constants diverge and the inverse relaxation time decreases for the soft modes with increasing pressure near the critical pressure (P-c similar to 11 GPa). The other Raman modes exhibit unusual critical behavior. Our results indicate that the observed behavior of the Raman frequencies can be predicted from the volume data through the mode Gruneisen parameter for the tetragonal-cubic transition in PbTiO3. The damping constant and the relaxation time for the Raman modes can also be predicted adequately using the pseudospin-phonon coupled model and the energy fluctuation model to explain the mechanism of the phase transition between the tetragonal and cubic phases in PbTiO3. (C) 2017 Elsevier GmbH. All rights reserved.Article Damping Constant (Linewidth) and the Relaxation Time of the Brillouin LA Mode for the Ferroelectric-Paraelectric Transition in PbZr1-xTixO3(Ieee-inst Electrical Electronics Engineers inc, 2016) Yurtseven, Hamit; Kiracı, Ali; Kiraci, Ali; 42475The damping constant (linewidth) of the longitudinal acoustic (LA) mode is calculated as a function of temperature using the observed Brillouin frequencies of this mode from the literature for the ferroelectric-paraelectric transition (T-C = 657 K) in PbZr1-xTixO3 (x = 0.45). For this calculation of the damping constant, the pseudospin-phonon coupled model and the energy fluctuation model are used by fitting to the observed data for the Brillouin frequencies of the LA mode in the ferroelectric (T < T-C) and paraelectric (T > T-C) phases of this compound (x = 0.45). Values of the activation energy are deduced for both ferroelectric and paraelectric phases. The relaxation time is also obtained by means of fitting to the observed data from the literature for the inverse relaxation time at various temperatures in the paraelectric phase of PbZr1-xTixO3. The temperature dependences of the damping constant and of the relaxation time with the values of the activation energy that we have calculated indicate that the pseudospin-phonon coupled model and the energy fluctuation model are capable of describing the ferroelectric-paraelectric transition (T-C = 657 K) in PbZr1-xTixO3 (x = 0.45) adequately.Article Damping constant and the relaxation time calculated for the lowest-frequency soft mode in the ferroelectric phase of Cd2Nb2O7(Elsevier Gmbh, Urban & Fischer verlag, 2016) Kiraci, A.; Kiracı, Ali; Yurtseven, H.; 42475The temperature dependence of the phonon frequency omega(ph) and of the damping constant Gamma(sp) due to pseudospin-phonon coupling of the lowest-frequency soft mode is calculated in the ferroelectric phase near the transition temperature (T-C =196 K) in Cd2Nb2O7. Raman frequency of the soft mode is used as an order parameter which is calculated from the molecular field theory. On that basis, the damping constant is calculated by fitting the expressions from the pseudospin-phonon coupled model and the energy fluctuation model to the observed linewidth from the literature below T-C in Cd2Nb2O7. From our analysis, we find that the molecular field theory is adequate for the soft mode behaviour and that both models are also satisfactory for the divergence behaviour of the damping constant as T-C is approached from the ferroelectric phase in Cd2Nb2O7. Values of the activation energy U are extracted from the temperature dependence of the damping constant (HWHM) of the soft mode in the ferroelectric phase of this crystal. Also, the inverse relaxation time is predicted using the Raman frequency and damping constant close to the T-C in the ferroelectric phase of Cd2Nb2O7, which increases considerably as T-C is approached from the ferroelectric phase, as observed experimentally. (C) 2016 Elsevier GmbH. All rights reserved.Article Optical and photoelectrical properties of TlInSSe layered single crystals(Elsevier Gmbh, 2018) Guler, I.; Güler, İpek; Gasanly, N.; 101531Optical and electrical properties of TlInSSe layered single crystals have been studied by means of transmission, reflection and photoconductivity measurements. Transmission and reflection experiments have been carried out from 540 to 1000 nm at room temperature. Derivative analysis was applied to both transmission and reflection spectra and indirect band gap energy was found as 2.06 eV. Photoconductivity measurements have been performed in the temperature range from 245 to 300 K and in the voltage range from 10 to 80 V. From the temperature-dependent photoconductivity measurements, the observed single peak shifted to higher wavelengths with increase of temperature. The increase of photoconductivity with temperature is due to the increase in the mobility of photocarriers that can be explained by Bube model. From X112 method, room temperature indirect band gap of the crystal was also found as 2.06 eV. From voltage-dependent photoconductivity measurements, the peak maximum increased linearly with increase of voltage because of increase of the mobility of charge carriers. Dark current-voltage characteristic of TlInSSe crystal showed the ohmic behavior that means space charge limited current did not exist in the crystal. From the photocurrent with different illumination intensity analysis, the supralinear photoconductivity associated with the two center model was found. (C) 2017 Elsevier GmbH. All rights reserved.Article Pressure-dependent Raman modes near the cubic-tetragonal transition in strontium titanate(Wiley, 2018) Kiraci, Ali; Kiracı, Ali; Yurtseven, Hamit; 42475The pressure dependence of the Raman frequency shifts of various Raman modes is calculated at room temperature using the volume data from the literature for the cubic-tetragonal transition in SrTiO3. The isothermal mode Gruneisen parameters of those Raman modes are obtained, which decrease with increasing pressure for this molecular crystal. Calculated Raman frequencies are then used to predict the damping constant and the inverse relaxation time of those Raman modes as a function of pressure by means of the pseudospin-phonon (PS) coupled model and the energy fluctuation (EF) model to describe the cubic-tetragonal transition in SrTiO3. Also, the values of the activation energy are extracted for the Raman modes studied using both models (PS and EF). Our predicted damping constant and the inverse relaxation time for the Raman modes, can be compared with the experimental measurements close to the cubic-tetragonal transition in SrTiO3.Article Temperature dependence of the damping constant and the relaxation time close to the tetragonal-cubic phase transition in SrZrO3(Elsevier Science Bv, 2017) Yurtseven, H.; Kiracı, Ali; Kiraci, A.; 42475The damping constant Gamma(sp) due to the pseudospin-phonon coupling is calculated as a function of temperature using the pseudospin-phonon coupled model and the energy fluctuation model close to the tetragonal-cubic transition (T-C = 1443 K) in SrZrO3. Using the observed Raman frequencies and the linewidth (FWHM) of the soft modes (E-g and A(1g)) from the literature, predictions of both models studied, are examined for the tetragonal-cubic transition in this crystalline system. Values of the activation energy U are extracted and also the inverse relaxation time is predicted as a function of temperature close to the phase transition studied in SrZrO3. Divergence behaviour of the damping constant (FWHM) of the soft modes is predicted from both models as also observed experimentally when T-C is approached from the tetragonal to the cubic phase in SrZrO3. The relaxation time also diverges close to the T-C in this crystal. It is indicated that the tetragonal cubic transition is of a second order as predicted from both models studied here, as also observed experimentally in SrZrO3. (C) 2016 Elsevier B.V. All rights reserved.Article Temperature dependence of the polarization, dielectric constant, damping constant and the relaxation time close to the ferroelectric-paraelectric phase transition in LiNbO3(Elsevier Gmbh, Urban & Fischer verlag, 2017) Kiraci, A.; Kiracı, Ali; Yurtseven, H.; 42475We calculate the order parameter (spontaneous polarization) and the inverse dielectric susceptibility at various temperatures in the ferroelectric phase of LiNbO3 for its ferroelectric-paraelectric phase transition (T-C =1260 K) using the Landau phenomenological model. For this calculation, the Raman frequencies of the soft optic mode (TO1) are used as the order parameter and the fitting procedure is employed for both the order parameter and the inverse dielectric susceptibility by means of the observed data from the literature. The temperature dependences of the damping constant and the inverse relaxation time are also computed using the pseudospin-phonon coupled model and the energy fluctuation model for the ferroelectric phase of LiNbO3. The activation energy is deduced from the damping constant for both models studied and compared with the k(B)T(C) value of LiNbO3. We find that the order parameter (Raman frequency of the TO1 mode) and the inverse dielectric susceptibility decrease with increasing temperature, as expected from the mean field model. We also find that the damping constant and the inverse relaxation time of this soft mode increases and decreases, respectively, with increasing temperature on the basis of the two models studied in the ferroelectric phase of LiNbO3. This indicates that our method of calculation is satisfactory to describe the observed behaviour of the ferroelectric-paraelectric phase transition in LiNbO3. (C) 2016 Elsevier GmbH. All rights reserved.