Matematik Bölümü
Permanent URI for this communityhttps://hdl.handle.net/20.500.12416/412
Browse
Browsing Matematik Bölümü by Scopus Q "Q2"
Now showing 1 - 20 of 775
- Results Per Page
- Sort Options
Article Citation - WoS: 0Citation - Scopus: 0A 6-point subdivision scheme and its applications for the solution of 2nd order nonlinear singularly perturbed boundary value problems(Amer inst Mathematical Sciences-aims, 2020) Mustafa, Ghulam; Baleanu, Dumitru; Baleanu, Dumitru; Ejaz, Syeda Tehmina; Anju, Kaweeta; Ahmadian, Ali; Salahshour, Soheil; Ferrara, Massimiliano; 56389; MatematikIn this paper, we first present a 6-point binary interpolating subdivision scheme (BISS) which produces a C-2 continuous curve and 4th order of approximation. Then as an application of the scheme, we develop an iterative algorithm for the solution of 2nd order nonlinear singularly perturbed boundary value problems (NSPBVP). The convergence of an iterative algorithm has also been presented. The 2nd order NSPBVP arising from combustion, chemical reactor theory, nuclear engineering, control theory, elasticity, and fluid mechanics can be solved by an iterative algorithm with 4th order of approximation.Article Citation - WoS: 165A central difference numerical scheme for fractional optimal control problems(Sage Publications Ltd, 2009) Baleanu, Dumitru; Baleanu, Dumitru; Defterli, Ozlem; Defterli, Özlem; Agrawal, Om P.; 56389; 31401; MatematikThis paper presents a modified numerical scheme for a class of fractional optimal control problems where a fractional derivative (FD) is defined in the Riemann-Liouville sense. In this scheme, the entire time domain is divided into several sub-domains, and a FD at a time node point is approximated using a modified Grunwald-Letnikov approach. For the first-order derivative, the proposed modified Grunwald-Letnikov definition leads to a central difference scheme. When the approximations are substituted into the fractional optimal control equations, it leads to a set of algebraic equations which are solved using a direct numerical technique. Two examples, one time-invariant and the other time-variant, are considered to study the performance of the numerical scheme. Results show that 1) as the order of the derivative approaches an integer value, these formulations lead to solutions for the integer-order system, and 2) as the sizes of the sub-domains are reduced, the solutions converge. It is hoped that the present scheme would lead to stable numerical methods for fractional differential equations and optimal control problems.Article Citation - WoS: 29Citation - Scopus: 30A comparative study on biodegradation and mechanical properties of pressureless infiltrated Ti/Ti6Al4V-Mg composites(Elsevier Science Bv, 2016) Esen, Ziya; Esen, Ziya; Butev, Ezgi; Karakaş, Mustafa Serdar; Karakas, M. Serdar; 52373; 47423; Ortak Dersler Bölümü; Malzeme Bilimi ve MühendisliğiThe mechanical response and biodegradation behavior of pressureless Mg-infiltrated Ti-Mg and Ti6Al4V-Mg composites were investigated by compression and simulated body fluid immersion tests, respectively. Prior porous preforms were surrounded uniformly with magnesium as a result of infiltration and the resultant composites were free of secondary phases and intermetallics. Although the composites' compressive strengths were superior compared to bone, both displayed elastic moduli similar to that of cortical bone and had higher ductility with respect to their starting porous forms. However, Ti-Mg composites were unable to preserve their mechanical stabilities during in-vitro tests such that they fractured in multiple locations within 15 days of immersion. The pressure generated by H-2 due to rapid corrosion of magnesium caused failure of the Ti-Mg composites through sintering necks. On the other hand, the galvanic effect seen in Ti6Al4V-Mg was less severe compared to that of Ti-Mg. The degradation rate of magnesium in Ti6Al4V-Mg was slower, and the composites were observed to be mechanically stable and preserved their integrities over the entire 25-day immersion test. Both composites showed bioinert and biodegradable characteristics during immersion tests and magnesium preferentially corroded leaving porosity behind while Ti/Ti6Al4V remained as a permanent scaffold. The porosity created by degradation of magnesium was refilled by new globular agglomerates. Mg(OH)(2) and CaHPO4 phases were encountered during immersion tests while MgCl2 was detected during only the first 5 days. Both composites were classified as bioactive since the precipitation of CaHPO4 phase is known to be precursor of hydroxyapatite formation, an essential requirement for an artificial material to bond to living bone. (C) 2016 Elsevier Ltd. All rights reserved.Article Citation - WoS: 10Citation - Scopus: 9A computational study of a stochastic fractal-fractional hepatitis B virus infection incorporating delayed immune reactions via the exponential decay(Amer inst Mathematical Sciences-aims, 2022) Al Qurashi, Maysaa; Jarad, Fahd; Rashid, Saima; Jarad, Fahd; 234808; MatematikRecently, researchers have become interested in modelling, monitoring, and treatment of hepatitis B virus infection. Understanding the various connections between pathogens, immune systems, and general liver function is crucial. In this study, we propose a higher-order stochastically modified delay differential model for the evolution of hepatitis B virus transmission involving defensive cells. Taking into account environmental stimuli and ambiguities, we presented numerical solutions of the fractal-fractional hepatitis B virus model based on the exponential decay kernel that reviewed the hepatitis B virus immune system involving cytotoxic T lymphocyte immunological mechanisms. Furthermore, qualitative aspects of the system are analyzed such as the existence-uniqueness of the non-negative solution, where the infection endures stochastically as a result of the solution evolving within the predetermined system's equilibrium state. In certain settings, infection-free can be determined, where the illness settles down tremendously with unit probability. To predict the viability of the fractal-fractional derivative outcomes, a novel numerical approach is used, resulting in several remarkable modelling results, including a change in fractional-order delta with constant fractal-dimension pi, delta with changing pi, and delta with changing both delta and pi. White noise concentration has a significant impact on how bacterial infections are treated.Article Citation - WoS: 37Citation - Scopus: 39A delayed plant disease model with Caputo fractional derivatives(Springer, 2022) Kumar, Pushpendra; Baleanu, Dumitru; Baleanu, Dumitru; Erturk, Vedat Suat; Inc, Mustafa; Govindaraj, V; 56389; MatematikWe analyze a time-delay Caputo-type fractional mathematical model containing the infection rate of Beddington-DeAngelis functional response to study the structure of a vector-borne plant epidemic. We prove the unique global solution existence for the given delay mathematical model by using fixed point results. We use the Adams-Bashforth-Moulton P-C algorithm for solving the given dynamical model. We give a number of graphical interpretations of the proposed solution. A number of novel results are demonstrated from the given practical and theoretical observations. By using 3-D plots we observe the variations in the flatness of our plots when the fractional order varies. The role of time delay on the proposed plant disease dynamics and the effects of infection rate in the population of susceptible and infectious classes are investigated. The main motivation of this research study is examining the dynamics of the vector-borne epidemic in the sense of fractional derivatives under memory effects. This study is an example of how the fractional derivatives are useful in plant epidemiology. The application of Caputo derivative with equal dimensionality includes the memory in the model, which is the main novelty of this study.Article Citation - Scopus: 11A Detailed Study on a Tumor Model with Delayed Growth of Pro-Tumor Macrophages(Springer, 2022) Dehingia, K.; Hosseini, K.; Salahshour, S.; Baleanu, D.; 56389This paper investigates a tumor-macrophages interaction model with a discrete-time delay in the growth of pro-tumor M2 macrophages. The steady-state analysis of the governing model is performed around the tumor dominant steady-state and the interior steady-state. It is found that the tumor dominant steady-state is locally asymptotically stable under certain conditions, and the stability of the interior steady-state is affected by the discrete-time delay; as a result, the unstable system experiences a Hopf bifurcation and gets stabilized. Furthermore, the transversality conditions for the existence of Hopf bifurcations are derived. Several graphical representations in two and three-dimensional postures are given to examine the validity of the results provided in the current study. © 2022, The Author(s), under exclusive licence to Springer Nature India Private Limited.Article Citation - WoS: 57Citation - Scopus: 62A direct numerical solution of time-delay fractional optimal control problems by using Chelyshkov wavelets(Sage Publications Ltd, 2019) Moradi, L.; Baleanu, Dumitru; Mohammadi, F.; Baleanu, D.; 56389; MatematikThe aim of the present study is to present a numerical algorithm for solving time-delay fractional optimal control problems (TDFOCPs). First, a new orthonormal wavelet basis, called Chelyshkov wavelet, is constructed from a class of orthonormal polynomials. These wavelet functions and their properties are implemented to derive some operational matrices. Then, the fractional derivative of the state function in the dynamic constraint of TDFOCPs is approximated by means of the Chelyshkov wavelets. The operational matrix of fractional integration together with the dynamical constraints is used to approximate the control function directly as a function of the state function. Finally, these approximations were put in the performance index and necessary conditions for optimality transform the under consideration TDFOCPs into an algebraic system. Moreover, some illustrative examples are considered and the obtained numerical results were compared with those previously published in the literature.Article Citation - WoS: 7Citation - Scopus: 10A Discussion On Random Meir-Keeler Contractions(Mdpi, 2020) Li, Cheng-Yen; Karapınar, Erdal; Karapinar, Erdal; Chen, Chi-Ming; 19184; MatematikThe aim of this paper is to enrich random fixed point theory, which is one of the cornerstones of probabilistic functional analysis. In this paper, we introduce the notions of random, comparable MT-gamma contraction and random, comparable Meir-Keeler contraction in the framework of complete random metric spaces. We investigate the existence of a random fixed point for these contractions. We express illustrative examples to support the presented results.Article Citation - WoS: 4Citation - Scopus: 4A Fourth Order Finite Difference Method for Time-Space Fractional Diffusion Equations(Global Science Press, 2018) Arshad, Sadia; Baleanu, Dumitru; Baleanu, Dumitru; Huang, Jianfei; Tang, Yifa; Zhao, Yue; 56389; MatematikA finite difference method for a class of time-space fractional diffusion equations is considered. The trapezoidal formula and a fourth-order fractional compact difference scheme are, respectively, used in temporal and spatial discretisations and the method stability is studied. Theoretical estimates of the convergence in the L-2 -norm are shown to be O(tau(2) + h(4)), where tau and h are time and space mesh sizes. Numerical examples confirm theoretical results.Article Citation - WoS: 24A fractional Dirac equation and its solution(Iop Publishing Ltd, 2010) Muslih, Sami I.; Baleanu, Dumitru; Agrawal, Om P.; Baleanu, Dumitru; MatematikThis paper presents a fractional Dirac equation and its solution. The fractional Dirac equation may be obtained using a fractional variational principle and a fractional Klein-Gordon equation; both methods are considered here. We extend the variational formulations for fractional discrete systems to fractional field systems defined in terms of Caputo derivatives. By applying the variational principle to a fractional action S, we obtain the fractional Euler-Lagrange equations of motion. We present a Lagrangian and a Hamiltonian for the fractional Dirac equation of order a. We also use a fractional Klein-Gordon equation to obtain the fractional Dirac equation which is the same as that obtained using the fractional variational principle. Eigensolutions of this equation are presented which follow the same approach as that for the solution of the standard Dirac equation. We also provide expressions for the path integral quantization for the fractional Dirac field which, in the limit a. 1, approaches to the path integral for the regular Dirac field. It is hoped that the fractional Dirac equation and the path integral quantization of the fractional field will allow further development of fractional relativistic quantum mechanics.Article Citation - WoS: 95Citation - Scopus: 108A Fractional Model for the Dynamics of Tuberculosis Infection Using Caputo-Fabrizio Derivative(Amer inst Mathematical Sciences-aims, 2020) Ullah, Saif; Baleanu, Dumitru; Khan, Muhammad Altaf; Farooq, Muhammad; Hammouch, Zakia; Baleanu, Dumitru; 56389; MatematikIn the present paper, we study the dynamics of tuberculosis model using fractional order derivative in Caputo-Fabrizio sense. The number of confirmed notified cases reported by national TB program Khyber Pakhtunkhwa, Pakistan, from the year 2002 to 2017 are used for our analysis and estimation of the model biological parameters. The threshold quantity R-0 and equilibria of the model are determined. We prove the existence of the solution via fixed-point theory and further examine the uniqueness of the model variables. An iterative solution of the model is computed using fractional Adams-Bashforth technique. Finally, the numerical results are presented by using the estimated values of model parameters to justify the significance of the arbitrary fractional order derivative. The graphical results show that the fractional model of TB in Caputo-Fabrizio sense gives useful information about the complexity of the model and one can get reliable information about the model at any integer or non-integer case.Article Citation - WoS: 61Citation - Scopus: 76A fractional model of convective radial fins with temperature-dependent thermal conductivity(Editura Acad Romane, 2017) Kumar, Devendra; Baleanu, Dumitru; Singh, Jagdev; Baleanu, Dumitru; MatematikThe principal purpose of the present article is to examine a fractional model of convective radial fins having constant and temperature-dependent thermal conductivity. In order to solve fractional order energy balance equation, a numerical algorithm namely homotopy analysis transform method is considered. The fin temperature is derived in terms of thermo-geometric fin parameter. Our method is not limited to the use of a small parameter, such as in the standard perturbation technique. The numerical simulation for temperature and fin tip temperature are presented graphically. The results can be used in thermal design to consider radial fins having both constant and temperature-dependent thermal conductivity.Article Citation - Scopus: 10A fractional order co-infection model between malaria and filariasis epidemic(Taylor and Francis Ltd., 2024) Kumar, P.; Baleanu, Dumitru; Kumar, A.; Kumar, S.; Baleanu, D.; 56389; MatematikIn this article, we investigate a mathematical malaria-filariasis co-infection model with the assistance of the non-integer order operator. Using the fractal-fractional operator in the Caputo-Fabrizio (CF) sense, it has been possible to understand the dynamical behaviour and complicatedness of the malaria-filariasis model. An investigation of the existence and uniqueness of the solution employs fixed-point theory. Ulam-Hyers stability helps examine the stability analysis of the proposed co-infection model. The malaria-filariasis model has been investigated using the Toufik-Atanagana (TA), a sophisticated numerical method for these biological co-infection models. With the help of numerical procedures, we provide the approximate solutions for the proposed model. A variety of fractal dimension and fractional order options are utilized for the presentation of the results. When we adjust sensitive parameters like τ and γ, the graphical representation illustrates the system’s behaviour and identifies suitable parameter ranges for solutions. In addition, we evaluate the model along with the regarded operators and various β1 values using an exceptional graphical representation. © 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of the University of Bahrain.Article Citation - WoS: 66Citation - Scopus: 77A fractional schrödinger equation and its solution(Springer/plenum Publishers, 2010) Muslih, Sami I.; Baleanu, Dumitru; Agrawal, Om P.; Baleanu, Dumitru; MatematikThis paper presents a fractional Schrodinger equation and its solution. The fractional Schrodinger equation may be obtained using a fractional variational principle and a fractional Klein-Gordon equation; both methods are considered here. We extend the variational formulations for fractional discrete systems to fractional field systems defined in terms of Caputo derivatives to obtain the fractional Euler-Lagrange equations of motion. We present the Lagrangian for the fractional Schrodinger equation of order alpha. We also use a fractional Klein-Gordon equation to obtain the fractional Schrodinger equation which is the same as that obtained using the fractional variational principle. As an example, we consider the eigensolutions of a particle in an infinite potential well. The solutions are obtained in terms of the sines of the Mittag-Leffler function.Article Citation - WoS: 10Citation - Scopus: 12A fractional study of generalized Oldroyd-B fluid with ramped conditions via local & non-local kernels(de Gruyter Poland Sp Z O O, 2021) Saeed, Syed Tauseef; Baleanu, Dumitru; Riaz, Muhammad Bilal; Baleanu, Dumitru; 56389; MatematikConvective flow is a self-sustained flow with the effect of the temperature gradient. The density is non-uniform due to the variation of temperature. The effect of the magnetic flux plays a major role in convective flow. The process of heat transfer is accompanied by mass transfer process; for instance condensation, evaporation and chemical process. Due to the applications of the heat and mass transfer combined effects in different field, the main aim of this paper is to do comprehensive analysis of heat and mass transfer of MHD unsteady Oldroyd-B fluid in the presence of ramped conditions. The new governing equations of MHD Oldroyd-B fluid have been fractionalized by means of singular and non-singular differentiable operators. In order to have an accurate physical significance of imposed conditions on the geometry of Oldroyd-B fluid, the ramped temperature, concentration and velocity are considered. The fractional solutions of temperature, concentration and velocity have been investigated by means of integral transform and inversion algorithm. The influence of physical parameters and flow is analyzed graphically via computational software (MATHCAD-15). The velocity profile decreases by increasing the Prandtl number. The existence of a Prandtl number may reflect the control of the thickness and enlargement of the thermal effect. The classical calculus is assumed as the instant rate of change of the output when the input level changes. Therefore it is not able to include the previous state of the system called the memory effect. Due to this reason, we applied the modern definition of fractional derivatives. Obtained generalized results are very important due to their vast applications in the field of engineering and applied sciences.Article Citation - WoS: 14Citation - Scopus: 18A Freely Damped Oscillating Fractional Dynamic System Modeled By Fractional Euler-Lagrange Equations(Sage Publications Ltd, 2018) Agila, Adel; Baleanu, Dumitru; Baleanu, Dumitru; Eid, Rajeh; Irfanoglu, Bulent; 56389; MatematikThe behaviors of some vibrating dynamic systems cannot be modeled precisely by means of integer representation models. Fractional representation looks like it is more accurate to model such systems. In this study, the fractional Euler-Lagrange equations model is introduced to model a fractional damped oscillating system. In this model, the fractional inertia force and the fractional damping force are proportional to the fractional derivative of the displacement. The fractional derivative orders in both forces are considered to be variable fractional orders. A numerical approximation technique is utilized to obtain the system responses. The discretization of the Coimbra fractional derivative and the finite difference technique are used to accomplish this approximation. The response of the system is verified by a comparison to a classical integer representation and is obtained based on different values of system parameters.Article Citation - WoS: 29Citation - Scopus: 31A General Fractional Pollution Model for Lakes(Springernature, 2022) Shiri, Babak; Baleanu, Dumitru; Baleanu, Dumitru; 56389; MatematikA model for the amount of pollution in lakes connected with some rivers is introduced. In this model, it is supposed the density of pollution in a lake has memory. The model leads to a system of fractional differential equations. This system is transformed into a system of Volterra integral equations with memory kernels. The existence and regularity of the solutions are investigated. A high-order numerical method is introduced and analyzed and compared with an explicit method based on the regularity of the solution. Validation examples are supported, and some models are simulated and discussed.Article Citation - Scopus: 5A Generalized Barycentric Rational Interpolation Method for Generalized Abel Integral Equations(Springer, 2020) Azin, H.; Baleanu, Dumitru; Mohammadi, F.; Baleanu, D.; 56389; MatematikThe paper is devoted to the numerical solution of generalized Abel integral equation. First, the generalized barycentric rational interpolants have been introduced and their properties investigated thoroughly. Then, a numerical method based on these barycentric rational interpolations and the Legendre–Gauss quadrature rule is developed for solving the generalized Abel integral equation. The main advantages of the presented method is that it provides an infinitely smooth approximate solution with no real poles for the generalized Abel integral equation. © 2020, Springer Nature India Private Limited.Article Citation - WoS: 54Citation - Scopus: 56A generalized q-fractional Gronwall inequality and its applications to nonlinear delay q-fractional difference systems(Springeropen, 2016) Abdeljawad, Thabet; Abdeljawad, Thabet; Alzabut, Jehad; Alzabut, Jehad; Baleanu, Dumitru; Baleanu, Dumitru; MatematikIn this paper, we state and prove a new discrete q-fractional version of the Gronwall inequality. Based on this result, a particular version expressed by means of the q-Mittag-Leffler function is provided. To apply the proposed results, we prove the uniqueness and obtain an estimate for the solutions of nonlinear delay Caputo q-fractional difference system. We examine our results by providing a numerical example.Article Citation - WoS: 30Citation - Scopus: 48A generalized q-mittag-leffler function by q-captuo fractional linear equations(Hindawi Ltd, 2012) Abdeljawad, Thabet; Abdeljawad, Thabet; Benli, Betul; Baleanu, Dumitru; Baleanu, Dumitru; MatematikSome Caputo q-fractional difference equations are solved. The solutions are expressed by means of a new introduced generalized type of q-Mittag-Leffler functions. The method of successive approximation is used to obtain the solutions. The obtained q-version of Mittag-Leffler function is thought as the q-analogue of the one introduced previously by Kilbas and Saigo (1995).