Bilgisayar Mühendisliği Bölümü Tezleri
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/58
Browse
Browsing Bilgisayar Mühendisliği Bölümü Tezleri by Subject "Accuracy"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Citation Count: Bastem, Hatice Nazlı (2021). Student academic performance prediction via artificial intelligence using machine learning algorithms / Makine öğrenmesi algoritmalarını kullanarak yapay zeka yoluyla öğrenci akademik performans tahmini. Yayımlanmış yüksek lisans tezi. Ankara: Çankaya Üniversitesi, Fen Bilimleri Enstitüsü.Student academic performance prediction via artificial intelligence using machine learning algorithms(2021) Bastem, Hatice Nazlı; Çankaya Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği BölümüÖğrencilerin okuldaki akademik başarıları hem öğrenciler hem öğretmenler hem de aileler tarafından önemsenmektedir. Bu nedenle performans tahmini, öğrencinin yaşamında önemli bir rol oynamaktadır. Performans tahmini ile başarısız öğrenciler başarılarını artırmaya yönlendirilebilir, çalışma programları oluşturulabilir, destekleyici ders kaynakları önerilebilir veya seçmeli dersler seçilebilir. Bu çalışmada öğrencinin akademik başarısı makine öğrenmesi yöntemleri ile tahmin edilebilmektedir. Bu çalışmada, Kaggle web sitesinden Portekiz'deki iki okuldan öğrencilerin bilgilerinden toplanan veri seti kullanılmıştır. Performans tahmini yapmak için üç farklı algoritma kullandık. Bunlar Karar Ağacı, Rastgele Orman ve Lojistik Regresyondur. Veri setinin %30'u test verisi olarak kullanılmıştır. Kalan %70'lik veri ise eğitim verisi olarak kullanılmıştır. Üç algoritma kullanılarak, karışıklık matrisi, doğruluk, geri çağırma, kesinlik ve auc değerleri elde edilir. Hangi algoritmanın hangi miktarda veri üzerinde daha başarılı olduğu sonucuna varılmıştır. Karar ağacı algoritması, 649 öğrenci verisi için maksimum derinlik 2 değeri ile en iyi doğruluk oranını verir. Rastgele orman algoritması, 649 öğrenci verisi ile en iyi doğruluğu verir. Lojistik regresyon algoritması, 395 öğrenci verisi ile en iyi doğruluğu verir.