Temel Mühendislik Ana Bilim Dalı
Permanent URI for this communityhttps://hdl.handle.net/20.500.12416/1818
Browse
Browsing Temel Mühendislik Ana Bilim Dalı by Subject "Free Energy"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article A phenomenological study on ferroelectric pyridinium tetrafluoroborate (C5NH6) BF4(Elsevier, 2019) Kiracı, Ali; 42475The temperature dependence of the specific heat C-V of (C5NH6)BF4 was analyzed according to a power law formula with a critical exponent alpha deduced from the compressible Ising model in the vicinity of the phase transition temperatures of T-C1 = 238 K and T-C2 = 204 K. The extracted values of the critical exponent alpha within the temperature intervals of vertical bar T - T-C1 vertical bar < 6 K and also T - T-C2 < 6 K were consistent with that predicted from the 3d-Ising model (alpha = 0.10) while obtained values of alpha within the temperature interval of T-C2 - T < 6 K were consistent with that predicted from 2-d potts model (alpha = 0.30). In addition, the thermodynamic quantities: the internal energy (U), the entropy (S) and the Helmholtz free energy (F) of this compound were calculated on the basis of the extracted values of the critical exponent a below and above the phase transition temperatures of T-C1 and T-C2.Article Analysis of the Specific Heat and the Free Energy of [N(Ch 3 ) 4 ] 2 Znbr 4 Close to the Ferro-Paraelastic Phase Transition(Taylor&Francis LTD, 2019) Kiracı, Ali; 42475A power-law formula deduced from the Ising model was used to analyze the temperature dependence of the specific heat C p and the Gibbs free energy G of [N(CH 3 ) 4 ] 2 ZnBr 4 compound in the vicinity of the phase transition temperature of T C = 287.2 K. Obtained values of the critical exponents α from the Gibbs free energy were consistent with that predicted from 2-d potts model (α = 0.3), while obtained values of α from the specific heat in both ferroelastic and paraelastic phases were consistent with that predicted from the mean field theory (α = 0) in the vicinity of the phase transition temperature. This is an indication of that [N(CH 3 ) 4 ] 2 ZnBr 4 compound undergoes a second order type phase transition. Also, the enthalpy (H) and the entropy (S) of this crystal were calculated in terms of the extracted values of the critical exponent in both ferroelastic and paraelastic phases.Article Analysis of the specific heat and the free energy of [N(CH3)(4)](2)ZnBr4 close to the ferro-paraelastic phase transition(Taylor&Francis LTD, 2019) Kiracı, Ali; 42475A power-law formula deduced from the Ising model was used to analyze the temperature dependence of the specific heat and the Gibbs free energy of [N(CH3)(4)](2)ZnBr4 compound in the vicinity of the phase transition temperature of T-C = 287.2 K. Obtained values of the critical exponents from the Gibbs free energy were consistent with that predicted from 2-d potts model ( = 0.3), while obtained values of from the specific heat in both ferroelastic and paraelastic phases were consistent with that predicted from the mean field theory ( = 0) in the vicinity of the phase transition temperature. This is an indication of that [N(CH3)(4)](2)ZnBr4 compound undergoes a second order type phase transition. Also, the enthalpy () and the entropy () of this crystal were calculated in terms of the extracted values of the critical exponent in both ferroelastic and paraelastic phases.