İstatistik Bilim Dalı Yayın Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/4382
Browse
Browsing İstatistik Bilim Dalı Yayın Koleksiyonu by WoS Q "Q4"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference Object Citation - WoS: 20Citation - Scopus: 23Classification Models Based On Tanaka's Fuzzy Linear Regression Approach: the Case of Customer Satisfaction Modeling(Ios Press, 2010) Sekkeli, Gizem; Koksal, Gulser; Batman, Inci; Bayrak, Ozlem Turker; 56416Fuzzy linear regression (FLR) approaches are widely used for modeling relations between variables that involve human judgments, qualitative and imprecise data. Tanaka's FLR analysis is the first one developed and widely used for this purpose. However, this method is not appropriate for classification problems, because it can only handle continuous type dependent variables rather than categorical. In this study, we propose three alternative approaches for building classification models, for a customer satisfaction survey data, based on Tanaka's FLR approach. In these models, we aim to reflect both random and fuzzy types of uncertainties in the data in different ways, and compare their performances using several classification performance measures. Thus, this study contributes to the field of fuzzy classification by developing Tanaka based classification models.Conference Object Citation - WoS: 2Citation - Scopus: 1Inter-laboratory comparison scheme for fuel sector, LABKAR in Turkey(Springer, 2009) Bayrak, Ozlem Turker; Okandan, Ender; Uckardes, Hale; 56416Fuel sector is one of the powerful sectors in Turkish industry. The implementation of a new law for regulating the fuel sector had enforced the quality control of fuels sold to public. This resulted in several accredited fuel-testing laboratories to emerge. Thus, a scheme to evaluate their proficiency in measurements became an important requirement. The inter-laboratory comparison scheme LABKAR for gasoline, diesel oil, LPG, lubricating oil and biodiesel samples have evolved to fulfill this need. In this paper, LABKAR is introduced; the results obtained from the program are analyzed and discussed. The kernel densities of the participants' results show that the use of robust mean as a consensus value is appropriate for fuel samples. Although the number of rounds is not enough to derive strict conclusions, it is seen that the performance of the scheme based on the standard deviations and coefficient of variations is improving in each round. It has been observed that the number of laboratories receiving "action" or "warning" is decreasing, which indicates that they are benefiting from the scheme.