Malzeme Bilimi ve Mühendisliği Bölümü
Permanent URI for this communityhttps://hdl.handle.net/20.500.12416/18
Browse
Browsing Malzeme Bilimi ve Mühendisliği Bölümü by WoS Q "Q1"
Now showing 1 - 18 of 18
- Results Per Page
- Sort Options
Article Citation - WoS: 100Citation - Scopus: 118Characterization of Ti-6Al-4V alloy foams synthesized by space holder technique(Elsevier Science Sa, 2011) Esen, Ziya; Esen, Ziya; Bor, Sakir; 52373; Ortak Dersler BölümüTi-6Al-4V foams, biomedical candidate materials, were synthesized by powder metallurgical space holder technique as a result of evaporation of magnesium to achieve desired porosity content. Final products contained porosities in the range similar to 43-64% with an average macropore size between 485 and 572 mu m and a lamellar type Widmanstatten microstructure composed of alpha-platelets and beta-laths. Unlike the case of bulk Ti-6Al-4V alloy tested under compression loading, compression stress-strain curves of manufactured Ti-6Al-4V foams were similar to those of elastic-plastic foams, which contain a linear elastic region; a plateau stage: and a densification stage. In the plateau region deformation bands perpendicular to the compression axis were developed and cell collapsing took place together with the buckling and fracture of some of the cell walls and edges in a ductile manner. Calculated elastic modulus and yield strength were in the range 1.42-14.7 GPa and 28.2-150 MPa, respectively, and the foam mechanical properties were found to be dependent on micro porous cell wall properties, which in turn depends on neck size between powder particles. Around 330 MPa yield strength value was calculated for porous cell walls by the use of Ti-6Al-4V alloy powder samples sintered in loose and compacted conditions, which were utilized to simulate the cell wall structure of foams. In addition, overall mechanical properties of foam s were investigated considering macro porosity fraction, p(macro), and the yield strength of foams exhibited a power law dependence, similar to commonly used minimum solid area models, in the form of A*(1 - p(marco))(n), where the proportionality constant "A" was found to be the yield strength of micro porous cell walls. (C) 2011 Elsevier B.V. All rights reserved.Conference Object Citation - WoS: 5Citation - Scopus: 6Compositional Dependence of Raman-Active Mode Frequencies and Line Widths in Tlıns2xse2(1-X) Mixed Crystals(Elsevier Science Bv, 2014) Guler, I.; Gasanly, N. M.The Raman spectra of mixed crystals TlInS2xSe2(1-x) have been investigated in the composition range of 0.25 <= x <= 0.75 and in the high-frequency region of 250-350 cm(-1) at room temperature. It was observed that Raman-active mode frequencies decrease as the selenium atoms content increases in the mixed crystals. The effect of crystal disorder on the line broadening of three high-frequency modes is reported. (C) 2014 Elsevier B.V. All rights reserved.Article Citation - WoS: 37Citation - Scopus: 36Corrosion Behaviours of Ti6Al4V-Mg/Mg-Alloy Composites(Pergamon-elsevier Science Ltd, 2020) Esen, Ziya; Esen, Ziya; Butev Ocal, Ezgi; Akkaya, Asli; Gurcay, Bensu; Ozcan, Ceren; Ozgumus, Burcu Asli; Dericioglu, Arcan F.; 52373; Ortak Dersler BölümüThe effect of coupling of unalloyed Mg and Mg-alloys (AZ91 and WE43) with Ti6Al4V alloy on corrosion and degradation behaviours of produced composites has been investigated in simulated body fluid (SBF) by hydrogen evolution, and surface and electrochemical characterization techniques. Combining of unalloyed Mg with Ti6Al4V intensified galvanic corrosion and catastrophic failure occurred by initiation of microcracks formed by sudden hydrogen gas evolution. In contrast to other composites, Ti6Al4V-AZ91 composites, containing new TiAl3 interface layer formed during composite production, preserved their mechanical integrities due to lowest corrosion and degradation rate of AZ91 alloy.Article Citation - WoS: 48Citation - Scopus: 51Effect of borotitanizing on microstructure and wear behavior of Inconel 625(Elsevier Science Sa, 2017) Gunen, Ali; Karakaş, Mustafa Serdar; Kanca, Erdogan; Cakir, Huseyin; Karakas, Mustafa Serdar; Gok, Mustafa Sabri; Kucuk, Yilmaz; Demir, Mehmet; 48915; Malzeme Bilimi ve MühendisliğiInconel 625, a nickel-based superalloy, is used in a wide range of applications including the marine and petroleum industries under where it is subjected to harsh conditions such as high temperatures and highly corrosive environments. However, its wear resistance is limited and can be often considered unsatisfactory in some applications. If this alloy were to be used under abrasive wear conditions, its surface would have to be protected by a wear resistant coating. In this study, a two-step thermo-chemical borotitanizing treatment (including an initial boriding step followed by titanium diffusion) is proposed. Microstructural characterization (optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction) and mechanical properties (induding micro-hardness and micro-abrasion wear) of the coated samples were conducted. Microstructural studies revealed a compact, homogenous, silicide-free coating, consisting of four distinct regions: a TiB2 layer, a multi-phase boride layer, a diffusion zone and the substrate. Hardness values were significantly higher than those obtained by standard boriding treatments. Due to the nano-sized bodding agents used, the coatings formed on the surface were thicker than coatings obtained by methods such as nitriding, paste bodding and pack-boriding, and comparable to that of laser boriding. The wear resistance was improved by up to ten times in comparison with untreated Inconel 625. Grooving was the effective wear mechanism in untreated Inconel 625. How-ever the increase in surface hardness achieved by the borotitanizing treatment changed the wear mechanism in the coated samples from grooving to rolling. (C) 2016 Elsevier B.V. All rights reserved.Article Citation - WoS: 27Citation - Scopus: 28Effect of CNT impregnation on the mechanical and thermal properties of C/C-SiC composites(Springernature, 2020) Tulbez, Simge; Esen, Ziya; Esen, Ziya; Dericioglu, Arcan F.; 52373; Ortak Dersler BölümüThe present study investigates the effect of additional carbon source, in the form of carbon nanotubes (CNTs), on mechanical and thermal properties of carbon fiber reinforced silicon carbide (C/C-SiC) ceramic matrix composites (CMC) produced by liquid silicon infiltration (LSI) technique. The CNTs used in this study were impregnated into the C/C preforms before the liquid silicon infiltration stage. The results showed that the addition of excess carbon to the C/C preforms in the form of CNTs enhanced Si infiltration efficiency significantly resulting in C/C-SiC composites with higher density and microstructural uniformity. Accordingly, the addition of CNTs improved the flexural strength of the composites by 40% with respect to no-CNT-containing composites due to a lower amount of residual porosity and additional reinforcement effect of the unreacted CNTs. The thermal conductivity of the resulting C/C-SiC composites has been also increased by 31% and 18% parallel and perpendicular to the carbon fiber-woven fabric surface, respectively, by CNT addition.Graphical abstractConference Object Citation - WoS: 20Citation - Scopus: 21Effect of electrical discharge machining on dental Y-TZP ceramic-resin bonding(Elsevier Ireland Ltd, 2017) Çoğun, Can; Rona, Nergiz; Yenisey, Murat; Esen, Ziya; Kucukturk, Gokhan; Gurun, Hakan; Cogun, Can; Esen, Ziya; 3837; 52373; Mekatronik Mühendisliği; Ortak Dersler BölümüPurpose: The study determined (i) the effects of electrical discharge machining (EDM) on the shear-bond strength (SBS) of the bond between luting resin and zirconia ceramic and (ii) zirconia ceramic's flexural strength with the three-point bending (TPB) test. Methods: Sixty 4.8 mm x 4.8 mm x 3.2 mm zirconia specimens were fabricated and divided into four groups (n = 15): SBG: sandblasted + silane, TSCG: tribochemical silica coated + silane, LTG: Er:YAG laser treated + silane, EDMG: EDM + silane. The specimens were then bonded to a composite block with a dual-cure resin cement and thermal cycled (6000 times) prior to SBS testing. The SBS tests were performed in a universal testing machine. The SBS values were statistically analyzed using ANOVA and Tukey's test. To determine flexural strength, sixty zirconia specimens were prepared and assigned to the same groups (n = 15) mentioned earlier. After surface treatment TPB tests were performed in a universal testing machine (ISO 6872). The flexural strength values were statistically analyzed using ANOVA and Tukey's test (a = 0.05). Results: The bond strengths for the four test groups (mean SD; MPa) were as follows: SBG (Control), 12.73 +/- 3.41, TSCG, 14.99 +/- 3.14, LTG, 7.93 +/- 2.07, EDMG, 17.05 +/- 2.71. The bond strength of the EDMG was significantly higher than those of the SBG and LTG (p < 0.01). The average flexural strength values for the groups SBG (Control), TSCG, LTG and EDMG were 809.47, 800.47, 679.19 and 695.71 MPa, respectively (p > 0.05). Conclusions: The EDM process improved the SBS. In addition, there was no significant adverse effect of EDM on the flexural strength of zirconia. (C) 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.Article Citation - WoS: 5Citation - Scopus: 5Effect of nitrogen on the antibacterial behavior of oxynitride glasses(Elsevier Sci Ltd, 2021) Akin, Seniz R. Kushan; Dolekcekic, Emrah; Webster, Thomas J.; 22421The main drawback of bioglasses is their restricted use in load bearing applications and the consequent need to develop stronger glassy materials. This has led to the consideration of oxynitride glasses for numerous biomedical applications. This paper investigated two different types of glasses at a constant cationic ratio, with and without nitrogen (a N containing and a N-free glass composition) to better understand the effect of N on the biological properties of glasses. The results revealed that the addition of N increased the glass transition temperature, isoelectric point (IEP) and slightly increased wettability. Moreover, compared to N including glass, N-free glass exhibited better anti-bacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), two key bacteria that infect implants. In summary, these in vitro results indicated that amine functional groups existing in N containing glasses which are missing in N-free glasses, caused a slight difference in wetting behavior and a more obvious change in isoelectric point and in bacterial response. N-free glasses exhibited better inhibitory results both against E. coli and S. aureus compared to N including glass suggesting that oxygen rich glasses should be further studied for their novel antibacterial properties.Article Citation - WoS: 11Effect of SiC addition on the thermal diffusivity of SiAlON ceramics(Elsevier Sci Ltd, 2017) Akin, Seniz Reyhan Kushan; Turan, Servet; Gencoglu, Pervin; Mandal, Hasan; 224219Despite the fact that thermal conductivity is a crucial parameter for SiAlON ceramics with respect to their suitability in various applications, including high-temperature structural components, wear parts, and cutting tools, studies on SiAlON ceramics reported thus far mainly focus on the improvement of their mechanical properties. In view of the lack of sufficient studies on the thermal conductivity of SiAlON ceramics, this study investigates the improvement in the thermal diffusivity behaviour of SiAlON ceramics by the addition of highly conductive SiC particles. As solid-solution SiAlON ceramics exhibit complex crystal structures typically composed of defects, the phonon scattering increases, subsequently decreasing diffusivity. In particular, the improvement in the thermal diffusivity of both alpha- and beta-SiAlONs was investigated by the addition of 0.25 wt% SiC. In addition, the effect of the SiC particle size on the thermal diffusivity of beta-SiAlON was examined. Using inverse diffusivity data, intrinsic and extrinsic scattering parameters were determined, and compared to intrinsic scattering, extrinsic scattering was a dominant factor. Furthermore, transmission electron microscopy (TEM) images of SiCp-reinforced a and -beta-SiAlON ceramics were recorded to examine the SiC particle distribution.Article Citation - WoS: 8Citation - Scopus: 9Effect of Sm on thermal and mechanical properties of Cu-Zr-Al bulk metallic glasses(Elsevier Science Sa, 2019) Sikan, F.; Atabay, S. E.; Motallebzadeh, A.; Ozerinc, S.; Kalay, I.; Kalay, Y. E.; 101579The effect of rare-earth (Sm) microalloying on the thermal stability and phase selection along with the effect of nanocrystallization on the mechanical properties of amorphous melt-spun ribbons of Zr50Cu40Al10, Zr49Cu39.2Al9.8Sm2 and Zr48Cu38.4Al9.6Sm4 alloys were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), Vickers and nanoindentation hardness tests and micropillar compression analysis. XRD and TEM analyses showed that all samples were fully amorphous in as-spun state; however, crystallization sequences for the Sm-free and the Sm micro-alloyed samples were different during devitrification. Combined study of XRD, DSC and TEM on melt-spun ribbons show that Zr48Cu38.4Al9.6Sm4 have nanocrystallization of Cu2Sm phase with an average diameter of 10 nm, which was absent in Zr50Cu40Al10, prior to crystallization of Cu10Zr7 phase. The nanoindentation and micropillar compression tests revealed Cu2Sm nanocrystals embedded in Zr48Cu38.4Al9.6Sm4 alloy improves strength and hardness. On the other hand, presence of these nanocrystals deteriorate shear band stability and thus result in a catastrophic brittle fracture through a single shear band burst.Article Citation - WoS: 22Citation - Scopus: 25In Vitro Bioactivity Investigation of Alkali Treated Ti6al7nb Alloy Foams(Elsevier, 2015) Butev, Ezgi; Esen, Ziya; Esen, Ziya; Bor, Sakir; 47423; Ortak Dersler BölümüBiocompatible Ti6Al7Nb alloy foams with 70% porosity manufactured by space holder method were activated via alkali treatment using 5 M NaOH solution at 60 degrees C. The interconnected pore structures enabled formation of homogenous sodium rich coating on the foam surfaces by allowing penetration of alkali solution throughout the pores which had average size of 200 mu m. The resulted coating layer having 500 nm thickness exhibited porous network morphology with 100 nm pore size. On the other hand, heat treatment conducted subsequent to alkali treatment at 600 degrees C in air transformed sodium rich coating into crystalline bioactive sodium titanate phases. Although the coatings obtained by additional heat treatment were mechanically stable and preserved their morphology, oxidation of the samples deteriorated the compressive strength significantly without affecting the elastic modulus. However, heat treated samples revealed better hydroxyapatite formation when soaked in simulated body fluid (SBF) compared to alkali treated foams. On the other hand, untreated surfaces containing bioactive TiO2 layer were observed to comprise of Ca and P rich precipitates only rather than hydroxyapatite within 15 days. The apatite formed on the treated porous surfaces was observed to have flower-like structure with Ca/P ratio around 1.5 close to that of natural bone. (C) 2014 Elsevier B.V. All rights reserved.Article Citation - WoS: 5Citation - Scopus: 5Investigation of phase selection hierarchy in Mn-Al alloys(Elsevier Sci Ltd, 2019) Genc, Ayse Merve; Kalay, İlkay; Acar, Ozgun; Turan, Servet; Kalay, Ilkay; Savaci, Umut; Kalay, Yunus Eren; 101579; Mekatronik MühendisliğiPrimarily attributed to the formation of the ferromagnetic tau-phase, near equiatomic composition of Mn-Al have recently received much attention in permanent magnet industry. Several mechanisms have been proposed in literature for the tau-phase formation but controversy still arises regarding the dominating mode. In the current work, MnAl-based alloys having different compositions in a range between Mn50.5Al49.5 and Mn57Al43 have been studied by means of in-situ high energy X-ray diffraction, differential scanning calorimetry (DSC) and magnetic measurements. Synchrotron and DSC experiments showed the dependence of the tau-MnAl on the intermediate disordered epsilon'-phase. Alloys having 53.4 at% or less Mn (S1, S2) followed a transformation route of epsilon+epsilon'-> tau ->beta+gamma(2) upon annealing. Alloys having more than 53.4 at% of Mn had only epsilon-phase. High energy X-ray diffraction patterns showed that epsilon-phase directly transformed into stable phases in the absence of epsilon'-phase. It is observed that epsilon' not only promoted the ferromagnetic tau-phase but also stabilized it by delaying the nucleation of stable phases.Article Citation - WoS: 47Citation - Scopus: 48Local Chemical and Topological Order in Al-Tb And its Role in Controlling Nanocrystal Formation(Pergamon-elsevier Science Ltd, 2012) Kalay, Y. E.; Kalay, I.; Hwang, Jinwoo; Voyles, P. M.; Kramer, M. J.; 101579How the chemical and topological short- to medium-range order develops in Al-Tb glass and its ultimate effect on the control of the high number density of face-centered-cubic-Al (fcc-Al) nuclei during devitrification are described. A combined study using high-energy X-ray diffraction (HEXRD), atom probe tomography (APT), transmission electron microscopy and fluctuation electron microscopy (FEM) was conducted in order to resolve the local structure in amorphous Al90Tb10. Reverse Monte Carlo simulations and Voronoi tessellation analysis based on HEXRD experiments revealed a high coordination of Al around Tb atoms in both liquid and amorphous states. APT results show Al-rich and Al-depleted regions within the as-quenched alloy. A network structure of Tb-rich clusters divides the matrix into nanoscale regions where Al-rich clusters are isolated. It is this finely divided network which allows the amorphous structure to form. Al-rich regions are the locus for fcc-Al crystallization, which occurs before the intermetallic crystallization. FEM reveals medium-range ordered regions similar to 2 nm in diameter, consistent with fcc-Al and trigonal-like Al3Tb crystal structures. We propose that the high coordination of Al around Tb limits diffusion in the intermetallic network, allowing for the isolated Al-rich regions to form at high density. These regions are responsible for the extremely high density of Al nanocrystal nuclei. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.Article Citation - WoS: 23Citation - Scopus: 24Microstructural and texture evolution during thermo-hydrogen processing of Ti6Al4V alloys produced by electron beam melting(Elsevier Science inc, 2020) Dogu, Merve Nur; Esen, Ziya; Esen, Ziya; Davut, Kemal; Tan, Evren; Gumus, Berkay; Dericioglu, Arcan F.; 52373; Ortak Dersler BölümüThe present study was conducted to reveal the effects of building angles and post heat-treatments (2-step Thermo-Hydrogen Processing (THP) and conventional annealing treatment) on the density, microstructure and texture of Ti6Al4V alloy parts produced by Electron Beam Melting (EBM). The results showed that regardless of the building angle; the density, microstructure and crystallographic texture (defined with respect to building angle) of the as-produced samples were identical; having Widmanstatten a structure and columnar beta-grains which are parallel to building direction. The main texture component for the alpha phase was (10 (1) over bar0)//building direction, and for beta phase (001)//building or heat flow direction. The first step of THP, namely, the hydrogenation step, produced a needle-like microstructure and increased the local misorientations due to lattice distortion. On the other hand, after application of the second step of THP, dehydrogenation step, microstructure was refined, particularly alpha-grains that were larger than 10 mu m and located at grain boundaries. Moreover, THP randomized the crystallographic texture since it involves beta to alpha phase transformation, at which one beta-grain can produce 12 distinct alpha-variants. The grain boundary misorientation distributions also changed in accordance with the microstructural changes during the 2-step THP. On the other hand, annealing coarsened the grain boundary and Widmanstatten alpha phases; moreover, it changed the texture so that the basal planes (0001) rotated 30 degrees around the building direction.Article Citation - Scopus: 171Nanoscale structure and structural relaxation in Zr 50Cu 45Al 5 bulk metallic glass(2012) Hwang, J.; Kalay, İlkay; Melgarejo, Z.H.; Kalay, Y.E.; Kalay, I.; Kramer, M.J.; Stone, D.S.; Voyles, P.M.; 101579; Mekatronik MühendisliğiHybrid reverse Monte Carlo simulations of the structure of Zr 50Cu 45Al 5 bulk metallic glass incorporating medium-range structure from fluctuation electron microscopy data and short-range structure from an embedded atom potential produce structures with significant fractions of icosahedral- and crystal-like atomic clusters. Similar clusters group together into nanometer-scale regions, and relaxation transforms crystal-like clusters into icosahedral clusters. A model refined against only the potential does not agree with the fluctuation microscopy data and contains few crystal-like clusters. © 2012 American Physical Society.Article Citation - WoS: 31Citation - Scopus: 35Optimization of the mechanical properties of Ti-6Al-4V alloy fabricated by selective laser melting using thermohydrogen processes(Elsevier Science Sa, 2017) Bilgin, Guney Mert; Esen, Ziya; Esen, Ziya; Akin, Seniz Kushan; Dericioglu, Arcan F.; 52373; Ortak Dersler Bölümü2-step Thermo Hydrogen Process (THP) including hydrogenation and dehydrogenation steps was applied to Ti-6Al-4V alloy fabricated by selective laser melting (SLM) process to refine the microstructure and to increase the ductility of the alloy. It was observed that as-fabricated alloy's surface was composed of oxides of titanium and aluminum, which may alter the hydrogenation kinetics. The hydrogen treatment for 1 hat 650 degrees C, the maximum hydrogen solubility temperature of the alloy, transformed starting non-equilibrium alpha'-martensitic phase to 13 and 8 (TiH2) phases. On the other hand, very fine discontinuous beta-phase was formed along with alpha-phase as a result of dehydrogenation at 700 degrees C for 18 h, which decreased the hydrogen level well below the starting value and caused transformation of delta-phase to fine alpha-phase. In contrast to commonly used THP treatments consisting of betatizing at high temperature, 2-step treatment prevented grain boundary alpha-phase formation as well as excessive grain growth. About 110% and 240% increments were detected in % Elongation (EL) and % Reduction in Area (RA) values, respectively, as a result of 2-step THP, while the strength decrease was limited to 10%. The change in ductility of the alloy was also verified by transformation of flat and shiny fracture surfaces seen in SLM fabricated alloy to a fracture surface containing equiaxed dimples after THP treatment. The hardness drop in the alloy after hydrogenation and dehydrogenation treatments was attributed to relief of residual stress and formation of equilibrium alpha and beta-phases.Article Citation - WoS: 5Citation - Scopus: 6Surface characteristics and in-vitro behavior of chemically treated bulk Ti6Al7Nb alloys(Elsevier Science Sa, 2017) Esen, Ziya; Esen, Ziya; Ocal, Ezgi Butev; 52373; Ortak Dersler BölümüThe effect of various treatments on surface chemical composition and structure, and bioactivity of Ti6Al7Nb bulk alloys has been investigated. The alloys were treated employing aqueous solutions of NaOH and CaCl2 separately, and also by subsequent CaCl2 treatment after NaOH treatment (NaOH-CaCl2 treatment) which were followed by heat treatment. NaOH treatment was observed to be effective in enrichment of surface layer with Na. On the other hand, Na+ ions were mostly replaced by Ca2+ ions as a result of NaOH-CaCl2 treatment, while single step CaCl2 treatment was less effective in Ca incorporation. Additionally, porous network surface structure seen in NaOH and NaOH-CaCl2 treated samples was completely different than globular morphology detected in CaCl2-treated samples in single step. Subsequent heat treatments caused coarsening of surface structure and loss of some Na+ and Ca2+ ions. NaOH and NaOH-heat treated samples did not exhibit apatite formation within 15 days immersion in simulated body fluid (SBF). On the other hand, NaOH-CaCl2 samples had the highest apatite formation; however, NaOH-CaCl2-heat treated samples did not display any mineralization. Conversely, CaCl2 treated samples allowed apatite formation after heat treatment. (C) 2016 Elsevier B.V. All rights reserved.Article Citation - WoS: 18Citation - Scopus: 19The Effect of Processing Routes On the Structure and Properties of Magnesium-Tini Composites(Elsevier Science Sa, 2012) Esen, Ziya; Esen, Ziya; 52373; Ortak Dersler BölümüTiNi particulate-reinforced magnesium matrix composites were fabricated by rotary hot swaging and post-annealing heat treatment. The magnesium matrix of the processed composites was observed to contain elongated grains comprised of equiaxed recrystallised grains. Each elongated grain was surrounded by thin, non-continuous magnesium oxide layers composed of nanometric magnesium oxide particles. The TiNi reinforcement particles preserved their starting spherical shape during processing and testing. However, the hot deformation and annealing heat treatment changed the underlying room temperature microstructures and transformation behaviours of the reinforcements. In contrast to the majority of the ceramic reinforcements, the ductility of the composites was not significantly degraded by the addition of TiNi reinforcements; conversely, an approximately 25% enhancement was recorded in the elongation values for the Mg-5 vol% TiNi alloy. While the yield strengths of the composites changed linearly with increasing reinforcement content, the highest compression peak strength value was obtained with the addition of 5 vol% TiNi, beyond which the strength was slightly decreased. During mechanical testing, the TiNi particles debonded due to insufficient bonding between the matrix and reinforcement, and fracture resulted largely within the oxide layers present in the interfacial region and the magnesium oxide film in the magnesium grain boundaries. (C) 2012 Elsevier B.V. All rights reserved.Article Citation - WoS: 57Citation - Scopus: 63Titanium-magnesium based composites: mechanical propertiesand in-vitro corrosion response in ringer's solution(Elsevier Science Sa, 2013) Esen, Ziya; Dikici, Burak; Duygulu, Ozgur; Dericioglu, Arcan F.; 52373; Ortak Dersler BölümüTi-Mg composite rods exhibiting both bioinert and biodegradable characteristics have been manufactured by hot rotary swaging from elemental powders of titanium and magnesium. As a result of processing, spherical magnesium powders elongated in the direction of deformation and the dendritic structure in starting magnesium powders transformed into highly equiaxed grains. Magnesium particles in the outer layer of the composites were decorated by thin layer of MgO while the interior parts were free from oxides. As expected, Young's moduli, yield and peak strengths of the composites were observed to decrease with an increase in the magnesium content, while ductility of composites was enhanced by decreasing the amount of titanium. Composites fractured at an angle 45 to the loading axis along the titanium particle boundaries and through the magnesium particles via transgranular type of fracture with the accumulation of twins near the fracture surface of magnesium. Mechanical properties of the composites were observed to be comparable to that of bone and the composites exhibited biodegradable and bioinert character upon testing in Ringer's solution such that magnesium was selectively corroded and pores were formed at prior magnesium powder sites while titanium preserved its starting skeleton structure. In addition, it was found that volume ratio of titanium and magnesium, and continuous MgO layer are the most important parameters which should be considered in designing biodegradable magnesium alloys with an appropriate corrosion rate. (C) 2013 Elsevier B.V. All rights reserved.