Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

COVID-19 Classification Using Hybrid Deep Learning and Standard Feature Extraction Techniques

dc.contributor.author El Shenbary, H. A.
dc.contributor.author Ebeid, Ebeid Ali
dc.contributor.author Baleanu, Dumitru I.
dc.contributor.other 01. Çankaya Üniversitesi
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.date.accessioned 2025-10-06T17:40:00Z
dc.date.available 2025-10-06T17:40:00Z
dc.date.issued 2023
dc.description.abstract There is no doubt that COVID-19 disease rapidly spread all over the world, and effected the daily lives of all of the people. Nowadays, the reverse transcription polymerase chain reaction is the most way used to detect COVID-19 infection. Due to time consumed in this method and material limitation in the hospitals, there is a need for developing a robust decision support system depending on artificial intelligence (AI) techniques to recognize the infection at an early stage from a medical images. The main contribution in this research is to develop a robust hybrid feature extraction method for recognizing the COVID-19 infection. Firstly, we train the Alexnet on the images database and extract the first feature matrix. Then we used discrete wavelet transform (DWT) and principal component analysis (PCA) to extract the second feature matrix from the same images. After that, the desired feature matrices were merged. Finally, support vector machine (SVM) was used to classify the images. Training, validating, and testing of the proposed method were performed. Experimental results gave (97.6%, 98.5%) average accuracy rate on both chest X-ray and computed tomography (CT) images databases. The proposed hybrid method outperform a lot of standard methods and deep learning neural networks like Alexnet, Googlenet and other related methods. © 2022 Elsevier B.V., All rights reserved.
dc.identifier.doi 10.11591/ijeecs.v29.i3.pp1780-1791
dc.identifier.issn 2502-4760
dc.identifier.issn 2502-4752
dc.identifier.scopus 2-s2.0-85144227853
dc.identifier.uri https://doi.org/10.11591/ijeecs.v29.i3.pp1780-1791
dc.identifier.uri https://hdl.handle.net/20.500.12416/15672
dc.language.iso en
dc.publisher Institute of Advanced Engineering and Science
dc.relation.ispartof Indonesian Journal of Electrical Engineering and Computer Science
dc.rights info:eu-repo/semantics/openAccess
dc.subject Alexnet
dc.subject Convolution Neural Network
dc.subject COVID-19
dc.subject Deep Learning
dc.subject Principal Component Analysis
dc.subject Support Vector Machine
dc.title COVID-19 Classification Using Hybrid Deep Learning and Standard Feature Extraction Techniques
dc.type Article
dspace.entity.type Publication
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 57208902767
gdc.author.scopusid 57211269238
gdc.author.scopusid 7005872966
gdc.description.department Çankaya University
gdc.description.departmenttemp [El Shenbary] H. A., Department of Mathematics, Faculty of Science, Cairo, Egypt; [Ebeid] Ebeid Ali, Department of Mathematics, Faculty of Science, Cairo, Egypt; [Baleanu] Dumitru I., Department of Mathematics, Çankaya Üniversitesi, Ankara, Turkey, Institute for Space Sciences, Bucharest, Bucharest, Romania
gdc.description.endpage 1791
gdc.description.issue 3
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
gdc.description.scopusquality Q3
gdc.description.startpage 1780
gdc.description.volume 29
gdc.description.wosquality N/A
gdc.identifier.openalex W4311950642
gdc.openalex.fwci 0.58574854
gdc.openalex.normalizedpercentile 0.64
gdc.opencitations.count 2
gdc.plumx.mendeley 20
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files