Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Reproducing kernels for harmonic Besov spaces on the ball

No Thumbnail Available

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier France Editions

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Besov spaces of harmonic functions on the unit ball of R '' are defined by requiring Sufficiently high-order derivatives of functions lie in harmonic Bergman spaces. We compute the reproducing kernels of those Besov spaces that are Hilbert spaces. The kernels turn out to be weighted infinite sums of zonal harmonics and natural radial fractional derivatives of the Poisson kernel

Description

Keywords

Unit Ball, Holomorphic-Functions, Bergman Spaces, Bloch, Interpolation, Sobolev

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Gergün, S., Kaptanoğlu, H.T., Üreyen, A.E. (2009). Reproducing kernels for harmonic Besov spaces on the ball. Comptes Rendus Mathematique, 347(13-14), 735-738. http://dx.doi.org/10.1016/j.crma.2009.04.016

WoS Q

Scopus Q

Source

Comptes Rendus Mathematique

Volume

347

Issue

13-14

Start Page

735

End Page

738