Reproducing kernels for harmonic Besov spaces on the ball
No Thumbnail Available
Date
2009
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier France Editions
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Besov spaces of harmonic functions on the unit ball of R '' are defined by requiring Sufficiently high-order derivatives of functions lie in harmonic Bergman spaces. We compute the reproducing kernels of those Besov spaces that are Hilbert spaces. The kernels turn out to be weighted infinite sums of zonal harmonics and natural radial fractional derivatives of the Poisson kernel
Description
Keywords
Unit Ball, Holomorphic-Functions, Bergman Spaces, Bloch, Interpolation, Sobolev
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Gergün, S., Kaptanoğlu, H.T., Üreyen, A.E. (2009). Reproducing kernels for harmonic Besov spaces on the ball. Comptes Rendus Mathematique, 347(13-14), 735-738. http://dx.doi.org/10.1016/j.crma.2009.04.016
WoS Q
Scopus Q
Source
Comptes Rendus Mathematique
Volume
347
Issue
13-14
Start Page
735
End Page
738