Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

On Fractional Calculus with General Analytic Kernels

dc.contributor.author Fernandez, Arran
dc.contributor.author Ozarslan, Mehmet Ali
dc.contributor.author Baleanu, Dumitru
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2025-10-06T17:36:36Z
dc.date.available 2025-10-06T17:36:36Z
dc.date.issued 2019
dc.description Fernandez, Arran/0000-0002-1491-1820
dc.description.abstract Many possible definitions have been proposed for fractional derivatives and integrals, starting from the classical Riemann-Liouville formula and its generalisations and modifying it by replacing the power function kernel with other kernel functions. We demonstrate, under some assumptions, how all of these modifications can be considered as special cases of a single, unifying, model of fractional calculus. We provide a fundamental connection with classical fractional calculus by writing these general fractional operators in terms of the original Riemann-Liouville fractional integral operator. We also consider inversion properties of the new operators, prove analogues of the Leibniz and chain rules in this model of fractional calculus, and solve some fractional differential equations using the new operators. (C) 2019 Elsevier Inc. All rights reserved.
dc.identifier.doi 10.1016/j.amc.2019.02.045
dc.identifier.issn 0096-3003
dc.identifier.issn 1873-5649
dc.identifier.scopus 2-s2.0-85062297779
dc.identifier.uri https://doi.org/10.1016/j.amc.2019.02.045
dc.identifier.uri https://hdl.handle.net/20.500.12416/15660
dc.language.iso en
dc.publisher Elsevier Science Inc
dc.relation.ispartof Applied Mathematics and Computation
dc.rights info:eu-repo/semantics/openAccess
dc.subject Fractional Calculus
dc.subject Special Functions
dc.subject Convergent Series
dc.subject Ordinary Differential Equation
dc.subject Volterra Integral Equation
dc.title On Fractional Calculus with General Analytic Kernels
dc.type Article
dspace.entity.type Publication
gdc.author.id Fernandez, Arran/0000-0002-1491-1820
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 57193722100
gdc.author.scopusid 6508281334
gdc.author.scopusid 7005872966
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Fernandez, Arran/E-7134-2019
gdc.description.department Çankaya University
gdc.description.departmenttemp [Fernandez, Arran] Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England; [Fernandez, Arran; Ozarslan, Mehmet Ali] Eastern Mediterranean Univ, Fac Arts & Sci, Dept Math, Mersin 10, Gazimagusa, Trnc, Turkey; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania
gdc.description.endpage 265
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
gdc.description.scopusquality Q1
gdc.description.startpage 248
gdc.description.volume 354
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2951682740
gdc.identifier.wos WOS:000461602500018
gdc.openalex.fwci 13.77673797
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 87
gdc.plumx.crossrefcites 85
gdc.plumx.mendeley 25
gdc.plumx.scopuscites 186
gdc.scopus.citedcount 183
gdc.wos.citedcount 170
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files