Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On artificial neural networks approach with new cost functions

dc.contributor.authorJafarian, Ahmad
dc.contributor.authorNia, Safa Measoomy
dc.contributor.authorGolmankhaneh, Alireza K.
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorID56389tr_TR
dc.date.accessioned2020-03-17T13:30:08Z
dc.date.available2020-03-17T13:30:08Z
dc.date.issued2018
dc.departmentÇankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this manuscript, the artificial neural networks approach involving generalized sigmoid function as a cost function, and three-layered feed-forward architecture is considered as an iterative scheme for solving linear fractional order ordinary differential equations. The supervised back-propagation type learning algorithm based on the gradient descent method, is able to approximate this a problem on a given arbitrary interval to any desired degree of accuracy. To be more precise, some test problems are also given with the comparison to the simulation and numerical results given by another usual method. (C) 2018 Elsevier Inc. All rights reserved.en_US
dc.description.publishedMonth12
dc.identifier.citationJafarian, Ahmad...et al. (2018). "On artificial neural networks approach with new cost functions", Applied Mathematics and Computation, Vol. 339, pp. 546-555.en_US
dc.identifier.doi10.1016/j.amc.2018.07.053
dc.identifier.endpage555en_US
dc.identifier.issn0096-3003
dc.identifier.startpage546en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/2651
dc.identifier.volume339en_US
dc.language.isoenen_US
dc.publisherElsevier Science INCen_US
dc.relation.ispartofApplied Mathematics and Computationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFractional Order Ordinary Differential Equationen_US
dc.subjectArtificial Neural Networks Approachen_US
dc.subjectLeast Mean Squares Cost Functionen_US
dc.subjectSupervised Back-Propagation Learning Algorithmen_US
dc.titleOn artificial neural networks approach with new cost functionstr_TR
dc.titleOn Artificial Neural Networks Approach With New Cost Functionsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: