An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems
dc.authorid | Khan, Adnan/0000-0001-7845-609X | |
dc.authorid | Khan, Hassan/0000-0001-6417-1181 | |
dc.authorscopusid | 55544565600 | |
dc.authorscopusid | 57216614285 | |
dc.authorscopusid | 57215009826 | |
dc.authorscopusid | 57045880100 | |
dc.authorscopusid | 57207242937 | |
dc.authorscopusid | 57206692659 | |
dc.authorscopusid | 57206692659 | |
dc.authorwosid | Khan, Hassan/Jxx-2410-2024 | |
dc.authorwosid | Shah, Rasool/Aaf-6062-2021 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Khan, Adnan/Jpw-8672-2023 | |
dc.authorwosid | 秦, 亚/Gsd-4418-2022 | |
dc.contributor.author | Qin, Ya | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Khan, Adnan | |
dc.contributor.author | Ali, Izaz | |
dc.contributor.author | Al Qurashi, Maysaa | |
dc.contributor.author | Khan, Hassan | |
dc.contributor.author | Shah, Rasool | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2021-01-07T11:42:31Z | |
dc.date.available | 2021-01-07T11:42:31Z | |
dc.date.issued | 2020 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Qin, Ya] Neijiang Normal Univ, Data Recovery Lab Sichuan Prov, Neijiang 641112, Peoples R China; [Qin, Ya] Neijiang Normal Univ, Sch Math & Informat Sci, Neijiang 641112, Peoples R China; [Khan, Adnan; Ali, Izaz; Khan, Hassan; Shah, Rasool] Abdul Wali Khan Univ, Dept Math, Mardan 23200, Pakistan; [Al Qurashi, Maysaa] King Saud Univ, Dept Math, Riyadh 11495, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan | en_US |
dc.description | Khan, Adnan/0000-0001-7845-609X; Khan, Hassan/0000-0001-6417-1181 | en_US |
dc.description.abstract | Mostly, it is very difficult to obtained the exact solution of fractional-order partial differential equations. However, semi-analytical or numerical methods are considered to be an alternative to handle the solutions of such complicated problems. To extend this idea, we used semi-analytical procedures which are mixtures of Laplace transform, Shehu transform and Homotopy perturbation techniques to solve certain systems with Caputo derivative differential equations. The effectiveness of the present technique is justified by taking some examples. The graphical representation of the obtained results have confirmed the significant association between the actual and derived solutions. It is also shown that the suggested method provides a higher rate of convergence with a very small number of calculations. The problems with derivatives of fractional-order are also solved by using the present method. The convergence behavior of the fractional-order solutions to an integer-order solution is observed. The convergence phenomena described a very broad concept of the physical problems. Due to simple and useful implementation, the current methods can be used to solve problems containing the derivative of a fractional-order. | en_US |
dc.description.publishedMonth | 6 | |
dc.description.sponsorship | Sichuan Province Youth Science and Technology Innovation Team [2019JDTD0015]; Application Basic research Project of Department of Education of Sucgyabb province [18ZA0273, !5T0027]; Scientific Research Project of Neijiang Normal University [18TD08] | en_US |
dc.description.sponsorship | Sichuan Province Youth Science and Technology Innovation Team (No. 2019JDTD0015); The Application Basic research Project of Department of Education of Sucgyabb province (18ZA0273, !5T0027); The Scientific Research Project of Neijiang Normal University (18TD08). | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Qin, Ya...et al. (2020). "An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems", Energies, Vol. 13, No. 11. | en_US |
dc.identifier.doi | 10.3390/en13112725 | |
dc.identifier.issn | 1996-1073 | |
dc.identifier.issue | 11 | en_US |
dc.identifier.scopus | 2-s2.0-85085933569 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.3390/en13112725 | |
dc.identifier.volume | 13 | en_US |
dc.identifier.wos | WOS:000545401100052 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 45 | |
dc.subject | Homotory Perturbation Method | en_US |
dc.subject | Shehu Transform | en_US |
dc.subject | Burger Equation | en_US |
dc.subject | Caputo Operator | en_US |
dc.title | An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems | tr_TR |
dc.title | An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 41 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |