Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Modeling and Simulation of the Fractional Space-Time Diffusion Equation

dc.contributor.author Miranda-Hernandez, M.
dc.contributor.author Lopez-Lopez, M. G.
dc.contributor.author Alvarado-Martinez, V. M.
dc.contributor.author Baleanu, D.
dc.contributor.author Gomez-Aguilar, J. F.
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2017-04-19T08:17:00Z
dc.date.accessioned 2025-09-18T15:43:10Z
dc.date.available 2017-04-19T08:17:00Z
dc.date.available 2025-09-18T15:43:10Z
dc.date.issued 2016
dc.description Alvarado Martinez, Victor Manuel/0000-0003-1769-9607; Gomez-Aguilar, J.F./0000-0001-9403-3767; Miranda Hernandez, Margarita/0000-0002-6769-4102; Lopez Lopez, Ma. Guadalupe/0000-0003-3831-5174 en_US
dc.description.abstract In this paper, the space-time fractional diffusion equation related to the electromagnetic transient phenomena in transmission lines is studied, three cases are presented; the diffusion equation with fractional spatial derivative, with fractional temporal derivative and the case with fractional space-time derivatives. For the study cases, the order of the spatial and temporal fractional derivatives are 0 < beta, gamma <= 2. respectively. In this alternative representation we introduce the appropriate fractional dimensional parameters which characterize consistently the existence of the fractional space-time derivatives into the fractional diffusion equation. The general solutions of the proposed equations are expressed in terms of the multivariate Mittag-Leffler functions; these functions depend only on the parameters beta and gamma and preserve the appropriated physical units for any value of the fractional derivative exponent. Furthermore, an analysis of the fractional time constant was made in order to indicate the change of the medium properties and the presence of dissipation mechanisms. The proposed mathematical representation can be useful to understand electrochemical phenomena, propagation of energy in dissipative systems, irreversible thermodynamics, quantum optics or turbulent diffusion, thermal stresses, models of porous electrodes, the description of gel solvents and anomalous complex processes. (C) 2015 Elsevier B.V. All rights reserved. en_US
dc.description.publishedMonth 1
dc.description.sponsorship PAPIIT-DGAPA-UNAM [IN112212]; CONACYT: catedras CONACYT para jovenes investigadores; [CONACYT-0167485] en_US
dc.description.sponsorship The authors appreciate the constructive remarks and suggestions of the anonymous referees that helped to improve the paper. We would like to thank to Mayra Martinez for the interesting discussions. The authors acknowledge to: PAPIIT-DGAPA-UNAM (IN112212) and CONACYT-0167485 for the economic support. Jose Francisco Gomez Aguilar acknowledges the support provided by CONACYT: catedras CONACYT para jovenes investigadores 2014. en_US
dc.identifier.citation Gomez-Aguilar, J. F...et al. (2016). Modeling and simulation of the fractional space-time diffusion equation. Communications In Nonlinear Science And Numerical Simulation, 30(1-3), 115-127. http://dx.doi.org/10.1016/j.cnsns.2015.06.014 en_US
dc.identifier.doi 10.1016/j.cnsns.2015.06.014
dc.identifier.issn 1007-5704
dc.identifier.issn 1878-7274
dc.identifier.uri https://doi.org/10.1016/j.cnsns.2015.06.014
dc.identifier.uri https://hdl.handle.net/20.500.12416/13862
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Fractional Diffusion en_US
dc.subject Transmission Lines en_US
dc.subject Caputo Derivative en_US
dc.subject Anomalous Diffusion en_US
dc.subject Subdiffusion en_US
dc.subject Superdiffusion en_US
dc.title Modeling and Simulation of the Fractional Space-Time Diffusion Equation en_US
dc.title Modeling and simulation of the fractional space-time diffusion equation tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Alvarado Martinez, Victor Manuel/0000-0003-1769-9607
gdc.author.id Gomez-Aguilar, J.F./0000-0001-9403-3767
gdc.author.id Miranda Hernandez, Margarita/0000-0002-6769-4102
gdc.author.id Lopez Lopez, Ma. Guadalupe/0000-0003-3831-5174
gdc.author.institutional Baleanu, Dumitru
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Gómez Aguilar, José/I-7027-2019
gdc.author.wosid Alvarado Martinez, Victor Manuel/B-6286-2009
gdc.author.wosid Lopez Lopez, Ma. Guadalupe/N-1486-2017
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Gomez-Aguilar, J. F.; Lopez-Lopez, M. G.; Alvarado-Martinez, V. M.] Tecnol Nacl Mexico, Ctr Nacl Invest & Desarrollo Tecnol, Cuernavaca 62490, Morelos, Mexico; [Miranda-Hernandez, M.] UNAM, IER, Temixco 62580, Morelos, Mexico; [Baleanu, D.] Cancaya Univ, Dept Math & Comp Sci, Fac Art & Sci, Ankara, Turkey; [Baleanu, D.] Inst Space Sci, R-76900 Magurele, Romania en_US
gdc.description.endpage 127 en_US
gdc.description.issue 1-3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 115 en_US
gdc.description.volume 30 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W912076904
gdc.identifier.wos WOS:000359496800010
gdc.openalex.fwci 8.81269393
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 87
gdc.plumx.crossrefcites 68
gdc.plumx.mendeley 35
gdc.plumx.scopuscites 94
gdc.wos.citedcount 88
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files