Quantization of fractional harmonic oscillator using creation and annihilation operators
dc.authorid | Al-Masaeed, Mohamed/0000-0001-5647-2339 | |
dc.authorscopusid | 57226353844 | |
dc.authorscopusid | 6602156175 | |
dc.authorscopusid | 57189867669 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Al-Jamel, Ahmed/Aag-6261-2019 | |
dc.contributor.author | Al-Masaeed, Mohamed | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Rabei, Eqab M. | |
dc.contributor.author | Al-Jamel, Ahmed | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2022-12-07T12:02:05Z | |
dc.date.available | 2022-12-07T12:02:05Z | |
dc.date.issued | 2021 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Al-Masaeed, Mohamed; Rabei, Eqab M.; Al-Jamel, Ahmed] Al Al Bayt Univ, Fac Sci, Phys Dept, POB 130040, Mafraq 25113, Jordan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan | en_US |
dc.description | Al-Masaeed, Mohamed/0000-0001-5647-2339 | en_US |
dc.description.abstract | In this article, the Hamiltonian for the conform-able harmonic oscillator used in the previous study [Chung WS, Zare S, Hassanabadi H, Maghsoodi E. The effect of fractional calculus on the formation of quantum-mechan-ical operators. Math Method Appl Sci. 2020;43(11):6950-67.] is written in terms of fractional operators that we called alpha-creation and alpha-annihilation operators. It is found that these operators have the following influence on the energy states. For a given order alpha, the alpha-creation operator pro-motes the state while the alpha-annihilation operator demotes the state. The system is then quantized using these crea-tion and annihilation operators and the energy eigenvalues and eigenfunctions are obtained. The eigenfunctions are expressed in terms of the conformable Hermite func-tions. The results for the traditional quantum harmonic oscillator are found to be recovered by setting alpha = 1. | en_US |
dc.description.publishedMonth | 1 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Al-Masaeed, Mohamed...et al. (2021). "Quantization of fractional harmonic oscillator using creation and annihilation operators", Open Physics, Vol. 19, No. 1, pp. 395-401. | en_US |
dc.identifier.doi | 10.1515/phys-2021-0035 | |
dc.identifier.endpage | 401 | en_US |
dc.identifier.issn | 2391-5471 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85111306316 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 395 | en_US |
dc.identifier.uri | https://doi.org/10.1515/phys-2021-0035 | |
dc.identifier.volume | 19 | en_US |
dc.identifier.wos | WOS:000682711700001 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | de Gruyter Poland Sp Z O O | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 9 | |
dc.subject | Harmonic Oscillator | en_US |
dc.subject | Conformable Derivative | en_US |
dc.subject | Fractional Order Creation | en_US |
dc.subject | Annihilation Operators | en_US |
dc.title | Quantization of fractional harmonic oscillator using creation and annihilation operators | tr_TR |
dc.title | Quantization of Fractional Harmonic Oscillator Using Creation and Annihilation Operators | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 6 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: