Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A generalized operational matrix of mixed partial derivative terms with applications to multi-order fractional partial differential equations

dc.authorscopusid 56328644700
dc.authorscopusid 15622742900
dc.authorscopusid 57224891966
dc.authorscopusid 57215335182
dc.authorscopusid 57213314244
dc.authorwosid Riaz, Muhammad/Aba-9824-2021
dc.authorwosid Jarad, Fahd/T-8333-2018
dc.contributor.author Talib, Imran
dc.contributor.author Jarad, Fahd
dc.contributor.author Jarad, Fahd
dc.contributor.author Mirza, Muhammad Umar
dc.contributor.author Nawaz, Asma
dc.contributor.author Riaz, Muhammad Bilal
dc.contributor.authorID 234808 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-02-21T13:11:51Z
dc.date.available 2022-02-21T13:11:51Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Talib, Imran; Mirza, Muhammad Umar; Nawaz, Asma] Virtual Univ Pakistan, Math Dept, Nonlinear Anal Grp NAG, Lahore, Pakistan; [Jarad, Fahd] Cankaya Univ, Dept Math, Ankara, Turkey; [Jarad, Fahd] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Riaz, Muhammad Bilal] Univ Management & Technol, Lahore, Pakistan; [Riaz, Muhammad Bilal] Univ Free State, Inst Groundwater Studies, Bloemfontein, South Africa en_US
dc.description.abstract In this paper, a computational approach based on the operational matrices in conjunction with orthogonal shifted Legendre polynomials (OSLPs) is designed to solve numerically the multi-order partial differential equations of fractional order consisting of mixed partial derivative terms. Our computational approach has ability to reduce the fractional problems into a system of Sylvester types matrix equations which can be solved by using MATLAB builtin function lyap (.). The solution is approximated as a basis vectors of OSLPs. The efficiency and the numerical stability is examined by taking various test examples. (C) 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. en_US
dc.description.publishedMonth 1
dc.description.sponsorship Nonlinear Analysis Group, Virtual University of Pakistan en_US
dc.description.sponsorship This work was supported by Nonlinear Analysis Group, Virtual University of Pakistan. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Talib, Imran...et al. (2022). "A generalized operational matrix of mixed partial derivative terms with applications to multi-order fractional partial differential equations", Alexandria Engineering Journal, Vol. 61, No. 1, pp. 135-145. en_US
dc.identifier.doi 10.1016/j.aej.2021.04.067
dc.identifier.endpage 145 en_US
dc.identifier.issn 1110-0168
dc.identifier.issn 2090-2670
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85108537753
dc.identifier.scopusquality Q1
dc.identifier.startpage 135 en_US
dc.identifier.uri https://doi.org/10.1016/j.aej.2021.04.067
dc.identifier.volume 61 en_US
dc.identifier.wos WOS:000709490700013
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 11
dc.subject Mixed Partial Derivative Terms en_US
dc.subject Operational Matrices en_US
dc.subject Legendre Polynomials en_US
dc.subject Caputo Derivative en_US
dc.subject Multi-Term And Multi-Order Fractional Partial Differential Equations en_US
dc.title A generalized operational matrix of mixed partial derivative terms with applications to multi-order fractional partial differential equations tr_TR
dc.title A Generalized Operational Matrix of Mixed Partial Derivative Terms With Applications To Multi-Order Fractional Partial Differential Equations en_US
dc.type Article en_US
dc.wos.citedbyCount 10
dspace.entity.type Publication
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery c818455d-5734-4abd-8d29-9383dae37406
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: