Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Fractal calculus involving gauge function

dc.authorid Khalili Golmankhaneh, Alireza/0000-0002-5008-0163
dc.authorscopusid 25122552100
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Khalili Golmankhaneh, Alireza/L-1554-2013
dc.contributor.author Golmankhaneh, Alireza K.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.other Matematik
dc.date.accessioned 2017-04-19T07:45:59Z
dc.date.available 2017-04-19T07:45:59Z
dc.date.issued 2016
dc.department Çankaya University en_US
dc.department-temp [Golmankhaneh, Alireza K.] Islamic Azad Univ, Coll Sci, Dept Phys, Urmia Branch, Orumiyeh, Iran; [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, MG-23, R-76900 Magurele, Romania en_US
dc.description Khalili Golmankhaneh, Alireza/0000-0002-5008-0163 en_US
dc.description.abstract Henstock-Kurzweil integral or gauge integral is the generalization of the Riemann integral. The functions which are not integrable because of singularity in the senses of Lebesgue or Riemann are gauge integrable. In this manuscript, we have generalized F-alpha-calculus using the gauge integral method for the integrating of the functions on fractal set subset of real-line where they have singularities. The suggested new method leads to the wider class of functions on the fractal subset of real-line that are *F-alpha-integrable, Using gauge function we define *F-alpha-derivative of functions their *F-alpha-derivative is not exist. The reported results can be used for generalizing the fundamental theorem of F-alpha-calculus. (C) 2016 Elsevier B.V. All rights reserved. en_US
dc.description.publishedMonth 8
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Golmankhaneh,A.K., Baleanu, D. (2016). Fractal calculus involving gauge function. Communications In Nonlinear Science And Numerical Simulation, 37, 125-130. http://dx.doi.org/10.1016/j.cnsns.2016.01.007 en_US
dc.identifier.doi 10.1016/j.cnsns.2016.01.007
dc.identifier.endpage 130 en_US
dc.identifier.issn 1007-5704
dc.identifier.issn 1878-7274
dc.identifier.scopus 2-s2.0-84959315660
dc.identifier.scopusquality Q1
dc.identifier.startpage 125 en_US
dc.identifier.uri https://doi.org/10.1016/j.cnsns.2016.01.007
dc.identifier.volume 37 en_US
dc.identifier.wos WOS:000371316800009
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 33
dc.subject Fractal Calculus en_US
dc.subject Fractional Derivative en_US
dc.subject Gauge Integral en_US
dc.subject Fractal Dimension en_US
dc.title Fractal calculus involving gauge function tr_TR
dc.title Fractal Calculus Involving Gauge Function en_US
dc.type Article en_US
dc.wos.citedbyCount 31
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: