Fractal calculus involving gauge function
dc.authorid | Khalili Golmankhaneh, Alireza/0000-0002-5008-0163 | |
dc.authorscopusid | 25122552100 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Khalili Golmankhaneh, Alireza/L-1554-2013 | |
dc.contributor.author | Golmankhaneh, Alireza K. | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2017-04-19T07:45:59Z | |
dc.date.available | 2017-04-19T07:45:59Z | |
dc.date.issued | 2016 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Golmankhaneh, Alireza K.] Islamic Azad Univ, Coll Sci, Dept Phys, Urmia Branch, Orumiyeh, Iran; [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, MG-23, R-76900 Magurele, Romania | en_US |
dc.description | Khalili Golmankhaneh, Alireza/0000-0002-5008-0163 | en_US |
dc.description.abstract | Henstock-Kurzweil integral or gauge integral is the generalization of the Riemann integral. The functions which are not integrable because of singularity in the senses of Lebesgue or Riemann are gauge integrable. In this manuscript, we have generalized F-alpha-calculus using the gauge integral method for the integrating of the functions on fractal set subset of real-line where they have singularities. The suggested new method leads to the wider class of functions on the fractal subset of real-line that are *F-alpha-integrable, Using gauge function we define *F-alpha-derivative of functions their *F-alpha-derivative is not exist. The reported results can be used for generalizing the fundamental theorem of F-alpha-calculus. (C) 2016 Elsevier B.V. All rights reserved. | en_US |
dc.description.publishedMonth | 8 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Golmankhaneh,A.K., Baleanu, D. (2016). Fractal calculus involving gauge function. Communications In Nonlinear Science And Numerical Simulation, 37, 125-130. http://dx.doi.org/10.1016/j.cnsns.2016.01.007 | en_US |
dc.identifier.doi | 10.1016/j.cnsns.2016.01.007 | |
dc.identifier.endpage | 130 | en_US |
dc.identifier.issn | 1007-5704 | |
dc.identifier.issn | 1878-7274 | |
dc.identifier.scopus | 2-s2.0-84959315660 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 125 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.cnsns.2016.01.007 | |
dc.identifier.volume | 37 | en_US |
dc.identifier.wos | WOS:000371316800009 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 33 | |
dc.subject | Fractal Calculus | en_US |
dc.subject | Fractional Derivative | en_US |
dc.subject | Gauge Integral | en_US |
dc.subject | Fractal Dimension | en_US |
dc.title | Fractal calculus involving gauge function | tr_TR |
dc.title | Fractal Calculus Involving Gauge Function | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 31 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: