Localization of Semantic Category Classification in Fmri Images
dc.authorid | Alkan, Sarper/0000-0002-3781-4951 | |
dc.authorscopusid | 56247204100 | |
dc.authorscopusid | 6701826249 | |
dc.authorwosid | Yarman, Fatos/Aap-5605-2021 | |
dc.contributor.author | Alkan, Sarper | |
dc.contributor.author | Yarman-Vural, Fatos T. | |
dc.date.accessioned | 2025-05-13T13:37:54Z | |
dc.date.available | 2025-05-13T13:37:54Z | |
dc.date.issued | 2014 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Alkan, Sarper] Cankaya Univ, Bilissel Bilimer Ana Bilim Dali, Yenimahalle Ankara, Turkey; [Alkan, Sarper] Cankaya Univ, Mekatron Muhendisligi Bolumu, Yenimahalle Ankara, Turkey; [Alkan, Sarper] Cankaya Univ, Orta Dogu Tekn Univ, Yenimahalle Ankara, Turkey; [Yarman-Vural, Fatos T.] Orta Dogu Tekn Univ, Bilgisayar Muhendisligi Bolumu, Ankara, Turkey | en_US |
dc.description | Alkan, Sarper/0000-0002-3781-4951 | en_US |
dc.description.abstract | In this study, we provide a methodology to localize the brain regions that contribute to semantic category classification. For this purpose we first cluster the data using spectral clustering. Then we extract local features within each cluster by using mesh-arc descriptors. Finally, we test the classification accuracy of each cluster against a hypothesis testing measure we provide here. We have found that, for the experimental task at hand, calcerine fissure and angular gyrus were most effective in classification. These results are shown to be match well with the nature of the experiment. Thus the validity of our approach is confirmed. | en_US |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
dc.identifier.doi | 10.1109/SIU.2014.6830695 | |
dc.identifier.endpage | 2181 | en_US |
dc.identifier.isbn | 9781479948741 | |
dc.identifier.issn | 2165-0608 | |
dc.identifier.scopus | 2-s2.0-84903755937 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 2178 | en_US |
dc.identifier.uri | https://doi.org/10.1109/SIU.2014.6830695 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12416/9943 | |
dc.identifier.wos | WOS:000356351400524 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | tr | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 22nd IEEE Signal Processing and Communications Applications Conference (SIU) -- APR 23-25, 2014 -- Karadeniz Teknik Univ, Trabzon, TURKEY | en_US |
dc.relation.ispartofseries | Signal Processing and Communications Applications Conference | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 1 | |
dc.subject | Functional Magnetic Resonance Imaging (Fmri) | en_US |
dc.subject | Feature Extraction | en_US |
dc.subject | Feature Clustering | en_US |
dc.subject | Brain Decoding | en_US |
dc.subject | Classification | en_US |
dc.subject | Hypothesis Testing | en_US |
dc.subject | Multi Voxel Pattern Analysis (Mvpa) | en_US |
dc.title | Localization of Semantic Category Classification in Fmri Images | en_US |
dc.type | Conference Object | en_US |
dc.wos.citedbyCount | 0 | |
dspace.entity.type | Publication |