Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A new fractional derivative involving the normalized sinc function without singular kernel

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Heidelberg

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

In this paper, a new fractional derivative involving the normalized sinc function without singular kernel is proposed. The Laplace transform is used to find the analytical solution of the anomalous heat-diffusion problems. The comparative results between classical and fractional-order operators are presented. The results are significant in the analysis of one-dimensional anomalous heat-transfer problems.

Description

Yang, Xiao-Jun/0000-0003-0009-4599

Keywords

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Yang, Xiao-Jun...et al. (2017). "A new fractional derivative involving the normalized sinc function without singular kernel", Europan Physical Journal Special-Topic, Vol.226, No.16-18, pp.3567-3575.

WoS Q

Q2

Scopus Q

Q2

Source

Volume

226

Issue

16-18

Start Page

3567

End Page

3575