Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Clustering Analysis for Vasculitic Diseases

dc.authorid Tolun, Mehmet Resit/0000-0002-8478-7220
dc.authorscopusid 6505872114
dc.authorscopusid 36476071800
dc.authorscopusid 6603218574
dc.authorscopusid 6603446979
dc.authorwosid Yildirim, Pinar/X-1182-2019
dc.authorwosid Ceken, Kagan/C-6377-2014
dc.authorwosid Tolun, Mehmet Resit/Kcj-5958-2024
dc.contributor.author Yildirim, Pinar
dc.contributor.author Ceken, Cinar
dc.contributor.author Ceken, Kagan
dc.contributor.author Tolun, Mehmet R.
dc.date.accessioned 2025-05-13T13:32:50Z
dc.date.available 2025-05-13T13:32:50Z
dc.date.issued 2010
dc.department Çankaya University en_US
dc.department-temp [Yildirim, Pinar; Tolun, Mehmet R.] Cankaya Univ, Fac Engn & Architecture, Dept Comp Engn, Ogretmenler Cad 14, TR-06530 Ankara, Turkey; [Ceken, Cinar] Minist Hlth Turkey, Dept Phys Med & Rehabil, Antalya Educ & Res Hosp, Antalya, Turkey; [Ceken, Kagan] Akdeniz Univ, Dept Radiol, Fac Med, TR-07070 Antalya, Turkey en_US
dc.description Springer en_US
dc.description Tolun, Mehmet Resit/0000-0002-8478-7220 en_US
dc.description.abstract We introduce knowledge discovery for vasculitic diseases in this paper. Vasculitic diseases affect some organs and tissues and diagnosing can be quite difficult. Biomedical literature can contain hidden and useful knowledge for biomedical research and we develop a study based on co-occurrence analysis by using the articles in MEDLINE which is a widely used database. The mostly seen vasculitic diseases are selected to explore hidden patterns. We select PolySearch system as a web based biomedical text mining tool to find organs and tissues in the articles and create two separate datasets with their frequencies for each disease. After forming these datasets, we apply hierarchical clustering analysis to find similarities between the diseases. Clustering analysis reveals some similarities between diseases. We think that the results of clustered diseases positively affect on the medical research of vasculitic diseases especially during the diagnosis and certain similarities can provide different views to medical specialists. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.doi 10.1007/978-3-642-14306-9_5
dc.identifier.endpage + en_US
dc.identifier.isbn 9783642143052
dc.identifier.issn 1865-0929
dc.identifier.issue PART 2 en_US
dc.identifier.scopus 2-s2.0-77956108993
dc.identifier.scopusquality Q4
dc.identifier.startpage 36 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-642-14306-9_5
dc.identifier.uri https://hdl.handle.net/20.500.12416/9915
dc.identifier.volume 88 en_US
dc.identifier.wos WOS:000289449800005
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Springer-verlag Berlin en_US
dc.relation.ispartof 2nd International Conference on Networked Digital Technologies -- JUL 07-09, 2010 -- Charles Univ, Prague, CZECH REPUBLIC en_US
dc.relation.ispartofseries Communications in Computer and Information Science
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject Biomedical Text Mining en_US
dc.subject Data Mining en_US
dc.subject Clustering Analysis en_US
dc.subject Vasculitic Diseases en_US
dc.title Clustering Analysis for Vasculitic Diseases en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication

Files