Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Prediction of the Heat Transfer Performance of Twisted Tape Inserts by Using Artificial Neural Networks

dc.contributor.author Kocak, Eyup
dc.contributor.author Ayli, Ece
dc.contributor.authorID 265836 tr_TR
dc.contributor.authorID 283455 tr_TR
dc.contributor.other 06.06. Makine Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-05-08T08:25:24Z
dc.date.accessioned 2025-09-18T16:06:49Z
dc.date.available 2024-05-08T08:25:24Z
dc.date.available 2025-09-18T16:06:49Z
dc.date.issued 2022
dc.description.abstract A numerical study is undertaken to investigate the effect of twisted tape inserts on heat transfer. Twisted tapes with various aspect ratios and single, double, and triple inserts are placed inside a tube for Reynolds numbers ranging from 8000 to 12000. Numerical results show that the tube with a twisted tape and different numbers of tape is more effective than the smooth tube in terms of thermo-hydraulic performance. The highest heat transfer is achieved with the triple insert, with the highest turning number and an increment of 15 %. Then, an artificial neural network (ANN) model with a three-layer feedforward neural network is adopted to obtain the Nusselt number on the basis of four inputs for a heated tube with a twisted insert. Several configurations of the neural network are examined to optimize the number of neurons and to identify the most appropriate training algorithm. Finally, the best model is determined with one hidden layer and thirteen neurons in the layer. Bayesian regulation is chosen as the training algorithm. With the optimized algorithm, excellent precision for measuring the output is provided, with R2 = 0.97043. In addition, the optimized ANN architecture is applied to similar studies in the literature to predict the heat transfer performance of twisted tapes. The developed ANN architecture can predict the heat transfer enhancement performance of similar problems with R2 values higher than 0.93. en_US
dc.description.publishedMonth 9
dc.identifier.citation Aylı, Ece; Koçak, Eyup. (2022). "Prediction of the heat transfer performance of twisted tape inserts by using artificial neural networks", Journal of Mechanical Science and Technology, Vol.36, No.9, pp.4849-4858. en_US
dc.identifier.doi 10.1007/s12206-022-0843-x
dc.identifier.issn 1738-494X
dc.identifier.issn 1976-3824
dc.identifier.scopus 2-s2.0-85137438167
dc.identifier.uri https://doi.org/10.1007/s12206-022-0843-x
dc.identifier.uri https://hdl.handle.net/20.500.12416/14594
dc.language.iso en en_US
dc.publisher Korean Soc Mechanical Engineers en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Ann en_US
dc.subject Cfd en_US
dc.subject Heat Transfer en_US
dc.subject Twisted Tape en_US
dc.title Prediction of the Heat Transfer Performance of Twisted Tape Inserts by Using Artificial Neural Networks en_US
dc.title Prediction of the heat transfer performance of twisted tape inserts by using artificial neural networks tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Koçak, Eyup
gdc.author.institutional Aylı, Ülkü Ece
gdc.author.scopusid 55371892800
gdc.author.scopusid 57193872973
gdc.author.wosid Ayli, Ulku Ece/J-2906-2016
gdc.author.wosid Kocak, Eyup/Hik-2192-2022
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ayli, Ece; Kocak, Eyup] Cankaya Univ, Dept Mech Engn, Ankara, Turkey en_US
gdc.description.endpage 4858 en_US
gdc.description.issue 9 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 4849 en_US
gdc.description.volume 36 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.openalex W4294310274
gdc.identifier.wos WOS:000849170000015
gdc.openalex.fwci 0.98919425
gdc.openalex.normalizedpercentile 0.69
gdc.opencitations.count 6
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.wos.citedcount 5
relation.isAuthorOfPublication 6ad744ba-3168-41f4-8cc1-ca6ed3c10eee
relation.isAuthorOfPublication cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isAuthorOfPublication.latestForDiscovery 6ad744ba-3168-41f4-8cc1-ca6ed3c10eee
relation.isOrgUnitOfPublication b3982d12-14ba-4f93-ae05-1abca7e3e557
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery b3982d12-14ba-4f93-ae05-1abca7e3e557

Files