Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Predicting the Severity of Covid-19 Patients Using a Multi-Threaded Evolutionary Feature Selection Algorithm

dc.contributor.author Kiziloz, Hakan Ezgi
dc.contributor.author Sevinc, Ender
dc.contributor.author Dokeroglu, Tansel
dc.contributor.author Deniz, Ayca
dc.contributor.authorID 234173 tr_TR
dc.contributor.other 06.09. Yazılım Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-05-08T08:25:18Z
dc.date.accessioned 2025-09-18T16:08:34Z
dc.date.available 2024-05-08T08:25:18Z
dc.date.available 2025-09-18T16:08:34Z
dc.date.issued 2022
dc.description Kiziloz, Hakan Ezgi/0000-0002-4815-9024; Deniz, Ayca/0000-0002-9276-4811 en_US
dc.description.abstract The COVID-19 pandemic has huge effects on the global community and an extreme burden on health systems. There are more than 185 million confirmed cases and 4 million deaths as of July 2021. Besides, the exponential rise in COVID-19 cases requires a quick prediction of the patients' severity for better treatment. In this study, we propose a Multi-threaded Genetic feature selection algorithm combined with Extreme Learning Machines (MG-ELM) to predict the severity level of the COVID-19 patients. We conduct a set of experiments on a recently published real-world dataset. We reprocess the dataset via feature construction to improve the learning performance of the algorithm. Upon comprehensive experiments, we report the most impactful features and symptoms for predicting the patients' severity level. Moreover, we investigate the effects of multi-threaded implementation with statistical analysis. In order to verify the efficiency of MG-ELM, we compare our results with traditional and state-of-the-art techniques. The proposed algorithm outperforms other algorithms in terms of prediction accuracy. en_US
dc.description.publishedMonth 6
dc.identifier.citation Deniz, Ayça;...et.al. (2022). "Predicting the severity of COVID-19 patients using a multi-threaded evolutionary feature selection algorithm", Expert Systems, Vol.39, No.5. en_US
dc.identifier.doi 10.1111/exsy.12949
dc.identifier.issn 0266-4720
dc.identifier.issn 1468-0394
dc.identifier.scopus 2-s2.0-85123916673
dc.identifier.uri https://doi.org/10.1111/exsy.12949
dc.identifier.uri https://hdl.handle.net/20.500.12416/15105
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Classification en_US
dc.subject Covid-19 en_US
dc.subject Extreme Learning Machines en_US
dc.subject Feature Selection en_US
dc.subject Multi-Threaded Computation en_US
dc.title Predicting the Severity of Covid-19 Patients Using a Multi-Threaded Evolutionary Feature Selection Algorithm en_US
dc.title Predicting the severity of COVID-19 patients using a multi-threaded evolutionary feature selection algorithm tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kiziloz, Hakan Ezgi/0000-0002-4815-9024
gdc.author.id Deniz, Ayca/0000-0002-9276-4811
gdc.author.institutional Dökeroğlu, Tansel
gdc.author.scopusid 57193338421
gdc.author.scopusid 54387015300
gdc.author.scopusid 35301100900
gdc.author.scopusid 55569137100
gdc.author.wosid Sevinç, Ender/Afi-6899-2022
gdc.author.wosid Kiziloz, Hakan/Aau-6307-2021
gdc.author.wosid Dökeroğlu, Tansel/Aaw-7857-2020
gdc.author.wosid Deniz, Ayça/Aau-6308-2021
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Deniz, Ayca] Middle East Tech Univ, Dept Comp Engn, Ankara, Turkey; [Kiziloz, Hakan Ezgi] Univ Turkish Aeronaut Assoc, Dept Comp Engn, Ankara, Turkey; [Sevinc, Ender] Ankara Sci Univ, Dept Comp Engn, Ankara, Turkey; [Dokeroglu, Tansel] Cankaya Univ, Dept Software Engn, Ankara, Turkey en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 39 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4210292513
gdc.identifier.wos WOS:000748847200001
gdc.openalex.fwci 2.15378702
gdc.openalex.normalizedpercentile 0.85
gdc.opencitations.count 10
gdc.plumx.crossrefcites 7
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 8
gdc.scopus.citedcount 8
gdc.wos.citedcount 5
relation.isAuthorOfPublication 6701315b-602f-4748-a3ef-23ff7b52ea1d
relation.isAuthorOfPublication.latestForDiscovery 6701315b-602f-4748-a3ef-23ff7b52ea1d
relation.isOrgUnitOfPublication aef16c1d-5b84-42f9-9dab-8029b2b0befd
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery aef16c1d-5b84-42f9-9dab-8029b2b0befd

Files