Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Analytic Solution of the Langevin Differential Equations Dominated by a Multibrot Fractal Set

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Mdpi

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

We present an analytic solvability of a class of Langevin differential equations (LDEs) in the asset of geometric function theory. The analytic solutions of the LDEs are presented by utilizing a special kind of fractal function in a complex domain, linked with the subordination theory. The fractal functions are suggested for the multi-parametric coefficients type motorboat fractal set. We obtain different formulas of fractal analytic solutions of LDEs. Moreover, we determine the maximum value of the fractal coefficients to obtain the optimal solution. Through the subordination inequality, we determined the upper boundary determination of a class of fractal functions holding multibrot function v(z)=1+3 kappa z+z(3).

Description

Ibrahim, Rabha W./0000-0001-9341-025X

Keywords

Analytic Function, Subordination And Superordination, Univalent Function, Open Unit Disk, Algebraic Differential Equations, Complex Fractal Domain, Fractional Calculus, Fractional Differential Operator

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Ibrahim, Rabha W.; Baleanu, Dumitru (2021). "Analytic Solution of the Langevin Differential Equations Dominated by a Multibrot Fractal Set", Fractal and Fractional, Vol. 5, No. 2.

WoS Q

Q1

Scopus Q

Q1

Source

Volume

5

Issue

2

Start Page

End Page