Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique
dc.authorid | Liu, Jinliang/0000-0001-5489-0246 | |
dc.authorid | Wu, Guo-Cheng/0000-0002-1946-6770 | |
dc.authorscopusid | 23390775700 | |
dc.authorscopusid | 6508051762 | |
dc.authorscopusid | 35753619200 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 9278258100 | |
dc.authorwosid | Abdeljawad, Thabet/T-8298-2018 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Liu, Jinliang/Afr-6203-2022 | |
dc.authorwosid | Wu, Guo-Cheng/T-9088-2017 | |
dc.contributor.author | Abdeljawad, Thabet | |
dc.contributor.author | Wu, Guo-Cheng | |
dc.contributor.author | Abdeljawad, Thabet | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Liu, Jinliang | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Wu, Kai-Teng | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-01-15T14:02:28Z | |
dc.date.available | 2020-01-15T14:02:28Z | |
dc.date.issued | 2019 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Wu, Guo-Cheng] Neijiang Normal Univ, Coll Math & Informat Sci, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R China; [Abdeljawad, Thabet] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia; [Liu, Jinliang] Nanjing Univ Finance & Econ, Coll Informat Engn, Nanjing 210023, Jiangsu, Peoples R China; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Hohai Univ, Coll Mech & Mat, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Wu, Kai-Teng] Neijiang Normal Univ, Coll Math & Informat Sci, Numer Simulat Key Lab Sichuan Prov, Neijiang 641110, Peoples R China | en_US |
dc.description | Liu, Jinliang/0000-0001-5489-0246; Wu, Guo-Cheng/0000-0002-1946-6770 | en_US |
dc.description.abstract | A class of semilinear fractional difference equations is introduced in this paper. The fixed point theorem is adopted to find stability conditions for fractional difference equations. The complete solution space is constructed and the contraction mapping is established by use of new equivalent sum equations in form of a discrete Mittag-Leffler function of two parameters. As one of the application, finite-time stability is discussed and compared. Attractivity of fractional difference equations is proved, and Mittag-Leffler stability conditions are provided. Finally, the stability results are applied to fractional discrete-time neural networks with and without delay, which show the fixed point technique's efficiency and convenience. | en_US |
dc.description.sponsorship | Sichuan Science and Technology Support Program [2018JY0120]; China Postdoctoral Science Foundation [2016M602632]; Scientific and Technological Research Council of Turkey (TUBTAK) [TBAG-117F473] | en_US |
dc.description.sponsorship | This study was financially supported by Sichuan Science and Technology Support Program (grant No. 2018JY0120) and China Postdoctoral Science Foundation (grant No. 2016M602632). Dumitru Baleanu is supported by the Scientific and Technological Research Council of Turkey (TUBTAK) (grant No. TBAG-117F473). The authors also feel grateful for the editor and the referees' helpful comments. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Wu, Guo-Cheng...et al. (2019). "Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique", Nonlinear Analysis-Modelling and Control, Vol. 24, No. 6, pp. 919-936. | en_US |
dc.identifier.doi | 10.15388/NA.2019.6.5 | |
dc.identifier.endpage | 936 | en_US |
dc.identifier.issn | 1392-5113 | |
dc.identifier.issn | 2335-8963 | |
dc.identifier.issue | 6 | en_US |
dc.identifier.scopus | 2-s2.0-85073616675 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 919 | en_US |
dc.identifier.uri | https://doi.org/10.15388/NA.2019.6.5 | |
dc.identifier.volume | 24 | en_US |
dc.identifier.wos | WOS:000496918100005 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | inst Mathematics & informatics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 101 | |
dc.subject | Fractional Difference Equations | en_US |
dc.subject | Fractional Discrete-Time Neural Networks | en_US |
dc.subject | Mittag-Leffler Stability | en_US |
dc.title | Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique | tr_TR |
dc.title | Mittag-Leffler Stability Analysis of Fractional Discrete-Time Neural Networks Via Fixed Point Technique | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 94 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | ab09a09b-0017-4ffe-a8fe-b9b0499b2c01 | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | ab09a09b-0017-4ffe-a8fe-b9b0499b2c01 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |