Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Predicting Electric Vehicle Adoption in the Eu: Analyzing Classification Performance and Influencing Attributes Across Countries, Gender, and Education Level

dc.authorscopusid 59520428100
dc.authorscopusid 24333488200
dc.authorscopusid 59479095900
dc.authorscopusid 6508147381
dc.contributor.author Kumbasar, M.
dc.contributor.author Tokdemir, G.
dc.contributor.author Labben, T.G.
dc.contributor.author Ertek, G.
dc.contributor.other Bilgisayar Mühendisliği
dc.date.accessioned 2025-05-13T11:56:53Z
dc.date.available 2025-05-13T11:56:53Z
dc.date.issued 2024
dc.department Çankaya University en_US
dc.department-temp Kumbasar M., Çankaya University, Computer Engineering Department, Ankara, Turkey; Tokdemir G., Çankaya University, Computer Engineering Department, Ankara, Turkey; Labben T.G., College of Business and Economics, United Arab Emirates University, Al Ain, United Arab Emirates; Ertek G., College of Business and Economics, United Arab Emirates University, Al Ain, United Arab Emirates en_US
dc.description.abstract Electric vehicles (EVs) have been one of the trending technologies in recent decades, as they are expected to transform the current automotive technology and transportation systems. To this end, the scope of this study is analyzing survey data on European consumers' EV purchase decisions. The objective is comparing the predictive quality of various classification algorithms in predicting EV adoption, across country, gender and education level of the participants, as well as the analysis of the influencing attributes. Initially, the data is filtered for each value of the chosen categorical attribute (country, gender or education level) with the missing values being imputed. Then, several classification algorithms in the Python sklearn package are applied through 5-fold-cross validation and the performance of the algorithms are compared based on standard classification metrics. There are notable variations in classification performance and influencing attributes depending on the values of the selected categorical attributes. © 2024 IEEE. en_US
dc.identifier.doi 10.1109/UBMK63289.2024.10773492
dc.identifier.endpage 482 en_US
dc.identifier.isbn 9798350365887
dc.identifier.scopus 2-s2.0-85215501649
dc.identifier.scopusquality N/A
dc.identifier.startpage 479 en_US
dc.identifier.uri https://doi.org/10.1109/UBMK63289.2024.10773492
dc.identifier.uri https://hdl.handle.net/20.500.12416/9756
dc.identifier.wosquality N/A
dc.institutionauthor Tokdemir, Gül
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof UBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- 26 October 2024 through 28 October 2024 -- Antalya -- 204906 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Classification Algorithms en_US
dc.subject Electric Vehicles (Evs) en_US
dc.subject Feature Ranking en_US
dc.subject Machine Learning en_US
dc.subject Market Adoption en_US
dc.subject Sustainable Development Goals (Sdg) en_US
dc.title Predicting Electric Vehicle Adoption in the Eu: Analyzing Classification Performance and Influencing Attributes Across Countries, Gender, and Education Level en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication a10f79e3-acee-4bb2-82f2-548c5fb0d165
relation.isAuthorOfPublication.latestForDiscovery a10f79e3-acee-4bb2-82f2-548c5fb0d165
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files